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ABSTRACT 

In this study, a new type of self-consolidating concrete for slip-form paving (SF SCC) was 

developed. Effects of materials and mix proportions on fresh concrete compactibility, 

flowability, and shape stability were studied. 

Type I cement and class C and F fly ashes were used as cementitious materials. Air­

entraining agent (AEA), viscosity modifying admixture (VMA), and superplasticizer were 

employed as admixtures. Normal river sand and limestone were utilized as aggregate. A total 

of 46 concrete mixes were studied, and non-rodding slump flow test, modified compaction 

factor test, IBB rheometer test, and "green" strength tests were performed for the concrete 

mixtures. In addition, a "mini-paver" was developed to simulate the field SF SCC paving in 

laboratory. 

The study has demonstrated that by engineering concrete materials and mix proportions, it is 

feasible to develop a new type of SCC for slip form paving application. Concrete mixtures 

having a compaction factor of approximate 1.0, slump of approximated 8", and spread of 

approximated 12" displayed not only to be able to self-compact but also to hold its shape 

right after placement. The test results also indicated that concrete compactibility increased 

but stability decreased with flowability. There was a nonlinear relationship between slump 

and spread for the concrete mixtures tested. The interception obtained from the IBB tests 

(similar to yield stress of the mixtures) had a good relationship with not only slump but also 

"green" strength of concrete. 
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1.1 Background 

1 

CHAPTERl 

INTRODUCTION 

Since its development in the 1940s, slip-form paving has been extensively used by the 

worldwide paving industry. Slip-form paving combines concrete placement, casting, 

consolidation, and finishing in one unique process. In this paving process, a concrete mixture 

with a slump of less than two inches is placed in front of a paver. As the paver moves 

forward, the mixture is spread, leveled, consolidated by equally-spaced internal vibrators, 

and then extruded (Figure 1.1 ). After extrusion, the fresh concrete slab can hold its shape for 

further surface finishing, texturing, and curing until the concrete sets. However, the low 

consistency of the mixture requires a great deal of vibration to remove entrapped air and 

consolidate the concrete. 

Slip-form 

• Paveme 

• 
Figure 1.1 Slip-form paving 

Consolidation is the process of inducing a closer arrangement of the solid particles in freshly 

mixed concrete or mortar during placement by reducing the voids, usually through vibration, 

rodding, and tamping or a combination of these actions. In finished pavements, over­

consolidation often occurs, leaving parallel longitudinal vibrator "trails" that contain 3% to 

4% less entrained air than that designed or specified for the concrete. This loss significantly 

reduces the freeze/thaw durability of concrete. In addition, concrete paving crews tend to 

deposit large piles of stiff concrete in front of the paving machine. Existence of the vibrator 

trails also impairs pavement smoothness, which is a key factor in determining highway user 
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satisfaction. The Federal Highway Administration has set a performance goal to significantly 

improve the measured pavement smoothness of the national highway system by 2008. More 

and more state Departments of Transportation are implementing smoothness and ride ability 

requirements as pay factors in highway construction contracts. As a result, research is needed 

to develop more workable concrete that will reduce the tendency of the paver to float and 

would result in smoother pavements. Also, consolidation is an energy-consuming process 

that generates significant amounts of noise. 

Today's concrete research and practices have shown that material selection and the mix 

design of concrete can be tailored to provide good compaction without the need for vibration. 

This approach is based on the principles of self-consolidating concrete (SCC) widely used in 

precast and cast-in-place construction. sec, which can be cast and compacted without the 

need for vibration, has generated tremendous industrial interest since its initial introduction 

in Japan in 1986. Due to its excellent flowability and stability (segregation resistance), SCC 

has been used for many different applications, including bridge decks, precast bridge 

members, and pavement repairs. It increases productivity, reduces environmental impacts (no 

vibration and noise), improves concrete quality (no vibration to damage the air void 

structure), and results in fewer defects in casting difficult details and dense reinforcement. If 

sec can be applied for slip-form paving, the harmful effects of over-consolidation will be 

avoided. 

sec is self-compacting due to its weight and is almost completely de-aerated while flowing 

in the formwork. Flowability is an important characteristic of SCC and makes it self­

compacting. The spread (slump flow) of SCC typically ranges from 18 to 32 inches after 

pulling the flow cone, which means that conventional sec cannot hold its shape right after 

casting. The challenge, therefore, is to develop an SCC for slip-form paving that possesses 

not only excellent self-compactability and stability before extrusion but also sufficient 

"green" strength right after extrusion while the concrete is still in a plastic state. 
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Green strength is defined as the ability of an incompletely cured material to undergo both 

removal from the mold and handling without distortion (CRC Press LLC 1989). Au: We 

don't need to use a comma to separate words (name of author or publisher) from numbers 

(year.) It ensures that the fresh concrete can sustain its self-weight, or hold its shape after de­

molding, without being supported by any framework. Anti-deformation, or resistance to flow, 

is a key issue in the green strength of fresh concrete. Studies have determined that the flow 

and deformation of fresh concrete is controlled by its rheological property-yield stress and 

that enough yield stress is necessary to resist deformation in fresh concrete (Murata 1984; 

Rajani and Morgenstern 1991; Christensen 1991; Pashias, et al. 1996; Saak 2000; and Sader 

and Davidsin 2005). On the other hand, to obtain self-compaction, a concrete mixture needs 

to overcome the shear strength resulting primarily from particle friction and cohesion 

(Skarendahl and Petersson 2000). The main goal of this study is to achieve these two 

conflicting characteristics of concrete at the appropriate times. 

Slip-form concrete pavement has a simple rectangular shape and light reinforcement. The 

typical size of the gap between the dowel bar and top of the sub-base is normally greater than 

5 inches. All of these characteristics make the requirement of high flowability for 

conventional SCC unnecessary in paving technology. The relatively low flowability, which 

ensures the self-consolidation, enhances the shape stability of fresh concrete. Furthermore, 

the extrusion process of the paver, although at low pressure, promotes concrete consolidation 

and green strength by rearranging solid particles for packing. This understanding of paving 

and concrete materials make it possible to obtain a rational balance between compactability 

and shape stability of a concrete mixture. The new slip-form SCC will not be as fluid as 

conventional SCC, but it will (1) be workable enough for machine placement, (2) achieve 

consolidation without vibration, (3) experience no visible segregation, (4) hold its shape after 

extrusion from the paver, and (5) possess performance properties (strength and durability) 

comparable to current pavement concrete. 



www.manaraa.com

4 

1.2 Objectives 

The goal of this study is to develop a new type of SCC for slip-form paving. The specific 

objective is to evaluate the effects of materials and mix proportions on concrete 

compactability, flowability, and shape stability. 

1.3 Research Approach 

Conventional slip-form pavement concrete has good shape stability (slump value from 1 to 2 

inches), but external vibration is required to consolidate and spread it during construction. 

Conventional SCC has good flowability and self-compactability, but formwork is required 

after casting. The new slip-form self-consolidating concrete (SF SCC) should have enough 

flowability to spread and compact itself with its own weight and enough shape stability to 

hold the shape after paving. These requirements lead to the conclusion that the characteristics 

of the new SF SCC should fall between conventional pavement concrete and SCC (Figure 

1.2). 

Q. 

E 
:::s 

en 

Conventional Slip-Form Pavement 
Concrete 
1-2" slump, 
Needs vibration 

Spread Diameter 

Conventional SCC 
Self-flowing, self-leveling, 
& self-consolidating, 
Needs formwork 

Slip-Form SCC 
Self-consolidating, 
Holds its shape 

Figure 1.2 Possible SF SCC 
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To ensure successful SF SCC, the research schematically outlined below (Figure 1.3) was 

used in the current study. 

Selection of Concrete Material 
Type I/II Cement, Limestone/Gravel, River Sand, Fly Ash, Admixtures 

Concrete Mix Proportions 
Coarse Aggregate Gradation, Paste Content, Fly Ash, Admixture 

,, 

I Optimal I 
Testing Methods: 
Compactibility test: 

• Compaction factor 

I Optimal Paste test 
Flowability tests: 

I 

+ Slump, IBB 

I Optimal Fly I 
rheometer 

I Shape stability: 
t Slump, Mini-paver 

Optimal test 

SF SCC Mix Proportion 

Figure 1.3 Flowchart of development of SF SCC 

Different materials were selected for this study based on their properties and potential effects 

on fresh concrete properties. These materials include Type I/II cement, limestone with 

different gradations, river sand, fly ash Class C and F, viscosity-modifying admixture (VMA), 

Acti-Gel, and superplasticizer. To achieve the optimal mix proportion, slump, compactability, 

and IBB rheometer tests were conducted on each batch of concrete. A selected concrete 

mixture was tested with a mini-paver and dowel bar box test to evaluate its self­

compactability and shape stability. 
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1.4 Scope of the Thesis 

This thesis contains five chapters, including the experimental work and discussion. The 

experimental studies include compactability, flowability, and shape stability of fresh concrete. 

The discussion includes the effects of both material and rheology properties on 

compactability, flowability, and shape stability. 

Chapter 2 contains a literature review, which provides the necessary background and 

terminology about the properties of fresh concrete relevant to this study. The use of different 

equipment to measure concrete workability, especially the compactability and rheology, is 

summarized. The effect of material properties on the properties of fresh concrete is also 

reviewed. 

Chapter 3 includes the laboratory work. Lab methods, including the measurement of 

aggregate properties, concrete compactability, and rheology, are presented. The materials 

information for each mixture is given in this chapter as well. In total, 46 batches of concrete 

mix proportions were designed. The complete test procedures are listed, and the experimental 

program design is explained. 

Chapter 4 summarizes the information collected during the experimental work. The analyses 

and discussions are given in this chapter. 

Chapter 5 concludes this thesis with the major findings and the recommendations of the study. 

The criteria for mix proportions for SF SCC are given at the end of this chapter. 
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CHAPTER2 

LITERATURE REVIEW 

2.1 Mixture Characteristics of Conventional SCC 

Pavement concrete is conventional concrete with a slump of 1 to 3 inches (Kosmatka, et al. 

2002). In its simplest form, it is a mixture of paste and aggregates. The paste, composed of 

Portland cement and water, coats the surface of the fine and coarse aggregates. Through a 

chemical reaction called hydration, the paste hardens and gains strength to form the rock-like 

mass known as concrete. Mixture proportions for conventional self-consolidating concrete 

(SCC) differ from those of ordinary pavement concrete; SCC has more powder content and 

less coarse aggregate (Okamura 1997). 

2.1.1 Materials for Conventional SCC 

The prototype of SCC was first completed in 1988 using materials already on the market 

(Okamura 1997). The materials used for conventional SCC are discussed below in two 

categories: aggregates and admixtures. 

Aggregates 

Aggregates constitute the bulk of a concrete mixture and give dimensional stability to 

concrete (Santhanam and Subramanian 2004). Aggregate size, shape, content, and gradation 

play a critical role in the successful development of an SCC. As with any concrete mix, 

aggregate size must be limited to that which will pass through rebar openings. In sec, the 

top size is often 1/2 to 3/8 inch. Enough attention has not been paid to quantify the effect of 

the shape, content, and gradation of the aggregate; several references are still available. 
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By comparing rounded aggregates to angular and semi-rounded ones, Mishima (1999) found 

that rounded aggregates provide a better flowability and less blocking potential for given 

water-powder ratio. He also found that self-compactability is achievable at lower fines 

content when rounded aggregates are used. 

O'Flannery and O'Mahony (1999) developed a method for shape characterization of coarse 

aggregate, which could assist in designing SCC mixtures with suitable aggregates. The 

purpose of their study was to determine dimensional parameters for the evaluation of any 

given coarse aggregate. 

Chen, et al. (2003) studied SCC mixture proportion usmg coarse aggregate with gap 

gradation. In their study, they varied the mixture proportion of gap-graded aggregates and 

Pozzuolanic materials with different cement paste amounts. By adjusting the amount of paste 

content, they found that self-compactability is achievable for sec using gap-graded 

aggregate. 

Sedran and Larrard (1999) presented a more theoretical approach to designing SCC without 

viscosity-modifying admixture by investigating the packing model instead of the traditional 

trial-and-error approach. The packing model can be related to aggregate gradation. Their 

model allows the granular skeleton of concrete to be optimized and the the number of 

experimental trials to be reduced. 

Admixtures 

The popularly used chemical admixtures in SCC are high-range water reducer (HRWR), 

essentially superplasticizer (SP), and viscosity-modifying admixture (VMA). HRWR helps 

achieve excellent flow at low water contents, and VMA reduces bleeding and improves 

stability. Because not all types of VMAs have shown satisfying results, research has 

concentrated on only two types: welan gum and antiwashout admixture. 
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Whiting (1979) studied four commercially available admixtures used in Type I Portland 

cement concrete mixes. They represented both melamine- and naphthalene-based 

formaldehyde condensation products. Hardened properties, such as compressive strength and 

freeze-thaw resistance, were studied. Whiting found out that HRWR were capable of 

lowering the net water content of concrete mixtures from 10% to 20% when used in dosages 

recommended by the manufacturers. 

Ozkul and Dogan (1999) studied the effect of a N-vinyl copolymer superplasticizer on the 

properties of fresh and hardened concrete. The workability of concrete was measured by the 

slump flow test. The coarse aggregate was crushed stone whose maximum size was 1 inch. 

By using this chemical admixture, which was slightly different from the conventional ones, 

the ability of water reduction was increased along with the retention of high workability for a 

long time. 

Roncero, et al. (1999) evaluated the influence of two superplasticizers (conventional 

melamine-based products and new-generation comb-type polymers) on the shrinkage of 

concrete exposed to wet and dry conditions. Tests of cylinders with embedded extensometers 

were used to measure deformations over a period of more than 250 days after casting. It was 

observed that the incorporation of superplasticizer increased the drying shrinkage of concrete 

when compared to conventional concrete. The melamine-based product led to slightly higher 

shrinkage than the comb-type polymer. 

Ouchi, et al. (1996) studied the effect of superplasticizer on the balance between flowability 

and the plastic viscosity of paste in conventional SCC. The ratio of V-funnel speed to flow 

area of cement paste with a fixed amount of superplasticizer was found to be almost constant 

and independent of the water-to-cement ratio. A higher amount of superplasticizer results in a 

lower ratio of V-funnel speed to flow area. The ratio was used as an index of the effect of 

superplasticizer on cement paste's flowing ability and viscosity with the goal of achieving 

self-compactability. However, the relationship between HRWR amount and its effect was 

found to differ depending on the type of cement or chemical admixture. 
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Khayat and Guizani (1997) studied the fresh properties of conventional SCC using different 

types of HRWR with VMA. Sari (1999) studied the fresh properties of conventional SCC 

using different types of HRWR without VMA. Their studies indicate that acrylic copolymers 

and polycarboxylate ethers are efficient at lower dosages compared to sulfonated condensates 

of melamine or naphthalene formaldehyde. 

Takada, et al. (1999) investigated the influence of welan gum on the water-to-cementitious­

material ratio. They found that the VMA raised the value of the ratio due to its tendency to 

make the mixture viscous. Welan gum increased the viscosity of the free water in the fresh 

water of fresh concrete because its polymers associate with each other in water. The tests 

results showed that a slump flow value of 650±30 mm and a V-funnel time of 11±2 seconds 

were achieved by using 0.01 % to 0.02% VMA and 0.025% to 0.035% superplasticizer from 

the total cementitious materials. These values were considered adequate for a workable SCC. 

Dehn, et al. (2000) studied the interaction between superplasticizer and VMA in order to 

verify the properties of conventional SCC. They discovered that the polymer in the VMA and 

the polymer in the superplasticizer restrain each other; this phenomena results in a higher 

segregation resistance. Some larger dosage of superplasticizer and some larger dosage of 

superplasticizer for a particular deformability. 

VMAs have been used for a long time. Based on former studies, Santhanam and 

Subramanian (2004) theorized that effective addition of VMA in SCC is an application­

related issue, and it is more efficient if VMA is added to concrete mixtures after 

superplasticizer has come in contact with cement particles. 
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2.1.2 Mixture Proportioning Methods for Conventional SCC 

A number of procedures for designing conventional SCC mixtures have been proposed. 

These procedures can be broadly classified into the following four categories: 

1. Empirical methods 

2. Rheology-based methods 

3. Particle-packing models 

4. Statistical methods 

Empirical methods 

Okamura and Ozawa (1995) first recommended the mix proportions for conventional SCC 

(Figure 2.1 ). 

Limited Gravel Content 50% of solid volume 

Appropriate Mortar 

Limited Sand Content 40% of mortar volume 

Higher Deformability 
Higher dosage of SP 

Moderate Viscosity 
LowerW/C 

Figure 2.1 Methods for achieving self-compactability (Okamura and Ozawa 1995) 

In the method, 50% of solid volume is taken up by coarse aggregate, while 40% of the mortar 

volume is fine aggregate. Paste composition is then determined using flow tests on mortar. 

Numerous experiments are required when applying this method. 

Edamatsu, et al. (2003) modified Okamura and Ozawa's original method. In Edamatsu's 

method, the limiting coarse aggregate volume ratio is kept at 0.5. The fine aggregate content 
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is then fixed by using V-funnel tests. Numerous experimental results from funnel tests and 

mortar flow tests are still required to determine water content and superplasticizer dosage. 

EFNARC (2001) also recommended a mixture design procedure based on Okamura and 

Ozawa's original method. The difference is that a higher amount of coarse aggregate, up to 

0.6, is permitted in the case of rounded coarse aggregate. The proportion of sand in the 

mortar is varied between 40% and 50%. Water content and superplasticizer dosage still need 

to be determined from mortar slump flow and V -funnel tests. 

Rheology-based methods 

The rheology-based methods are based on the successful application of the two-parameter 

Binghan model of concrete flow behavior. 

Saak, et al. (2001) proposed a method based on rheological principles to control segregation 

under both static and dynamic conditions. In his model, a minimum yield stress of paste was 

used to control the segregation of aggregate in static conditions. Dynamic control of the 

settling particles can be achieved by minimizing its terminal velocity, which depends on the 

plastic viscosity. Paste rheology is all that must be adjusted based on experimental results; 

this can be done using the "self-flow zone" concept. Figure 2.2 shows three zones, one each 

for plain cement paste, cement paste with silica fume, and cement paste containing silica 

fume and a cellulose derivative. Only a few experiments will be required to arrive at a 

suitable paste composition that will fall into one of the self-flow zones. 

Other attempts were made to relate the design of conventional SCC to rheology properties. 

Wallevik (2003) defined a range on yield stress-plastic viscosity diagrams for the 

development of conventional SCC (Figure 2.3). As they stated, all mixtures with the yield 

stress and plastic viscosity in the range shown in Figure 2.3 are SCC. 
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Figure 2.2 Self-flow zones for different pastes (Saak, et al. 2001) 
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W allevik (2002) also related rheological parameters with slump-flow results to define a 

proposed area for SCC in a yield stress-plastic viscosity diagram (Figure 2.4). If the plastic 

viscosity is low or below around 40 Pa·s, the SCC should have significant yield value 

(depending on the viscosity). On the other hand, if the SCC is "viscous," that is, has a plastic 

viscosity over 70 Pa·s, the yield value has to be about zero. The recommended values are 

within the inner box in Figure 2.4. 

120 ' ' ' ____________________ , ____________________ ... ____________________ 1,. __________ ________ _ 

' ' ' 
Ci ' ' ' 

' ' ' 
' ' ' e::. 

IJI 
IJI 

' ' ' 
' ' 

Min. Slum~flow to obtain spc 
f!! 80 c;; -- 11 --550-mm --- ~ - - ---------- ---- -- -~ -- --- --------- --- ---~ ------- --- -- -- -----
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40 
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Figure 2.4 Proposed area in yield stress-viscosity diagram for SCC (Wallevik 2002) 

Particle-packing methods 

Particle packing has been suggested by Andersen and Johansen (1991), and Roy, et al. (1993) 

as a scientific approach to mixture proportioning of concrete. The principle is to minimize 

the void content of a dry granular mixture of all ingredients (including cement, fly ash, and 

silica fume). Two different types of model are available: the discrete model and the 

continuous model. The discrete model has been used more widely than the continuous one. In 

this section, the discrete model will be reviewed in detail. 

Sedran and Larrard ( 1999) demonstrated the use of a discrete particle model to design SCC 

mixtures (without VMA). This model optimized the granular skeleton of concrete and used 



www.manaraa.com

15 

the results from the rheology measurements of fresh SCC, filling ability (using L box tests), 

and resistance to segregation. The relationship between these parameters and the packing 

density of the skeleton were then established. The proportions of fresh SCC were then found 

by using computer programs that optimized the mixtures with respect to their properties and 

cost. 

Statistical methods 

Khayat, et al. (2000) proposed a mixture design procedure based on statistical models using a 

factorial design of experiments. In Khayat' s study, five parameters ( cementitious material 

content, water-to-cementitious-materials ratio, HR WRA concentrations, VMA 

concentrations, and volume of coarse aggregate) were chosen. The response variables were 

the slump flow, relative yield stress, and viscosity. The successful application of this model 

requires a total of 32 SCC mixtures to obtain the required relationship. The advantage of such 

an approach is that the effects of critical factors can be evaluated using a minimum number 

of experiments. 

2.1.3 Mixture Proportion for Conventional SCC 

In workability terms, self-compactability signifies the ability of the concrete to flow after 

being discharged from the pump hose, a skip, or similar, only through gravity and to fill 

intended spaces in the formwork to achieve a zero-defect and uniform-quality concrete 

(Skarendahl and Petersson 2000). As a fresh state property, self-compactability can be 

characterized in relation to the following functional requirements: 

1. Filling ability 

2. Resistance to segregation 

3. Passing ability 
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This means the self-compactability requires not only high deformability of paste or mortar 

but also resistance to segregation between coarse aggregate and mortar when the concrete 

flows through the confined zone of reinforcing bars. 

To achieve good filling ability, the concrete must have small inter-particle friction and the 

paste must have excellent deformability (Okamura and Ouchi 2003). Reducing the friction 

between the solid particles, which includes coarse and fine aggregates and all types of 

powder, is a superior way to make concrete deform well. Currently, popularly accepted 

methods to decrease the friction of aggregates is to increase the aggregate inter-particle 

distance. This can be achieved by reducing the aggregate content, or in other words, 

increasing the paste content. 

It is also important for paste to have good flowability (low yield value) and enough resistance 

to segregation (high yield value and moderate viscosity) to secure the good filling ability of 

concrete (Saak, et. al. 2001 and Skarendahl and Petersson 2000). The most popular way to 

increase the deformability of the paste is (1) Using superplasticizer and (2) Balancing the 

water-to-powder ratio. The effect of superplasticizer on fresh concrete properties will be 

discussed in detail later. 

Segregation of fresh concrete is described by in-homogeneity in the distribution of 

constituent materials. It can be categorized as the segregation between water and solid 

(bleeding of water) and aggregate segregation. The former situation can be avoided by 

reducing the amount of movable water in the mixture. Two methods can be used to achieve 

this goal: using less water or a lower water-to-powder ratio and using powder materials with 

a high surface area, such as fly ash (ACI Committee 232, 1996). Aggregate segregation is 

usually caused by the low yield stress of the paste (Saak, et al. 2001). It can be avoided by 

increasing both friction and cohesion of paste phase (Skarendahl and Petersson 2000). But 

increasing cohesion is much more beneficial than increasing friction, because increasing 

friction also decreases the deformability. To resist segregation, normally aggregates with 
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limited content and reduced maximum size are used together with the viscosity agent and 

lower water-to-powder ratio. 

To satisfy all of these properties, Okamura (1997) developed a method to achieve self­

compactability (Figure 2.12), which can also be summarized as follows: 

1. Limited aggregate content 

2. Low water-to-powder ratio 

3. Use of superplasticizer 

The mix proportion of SCC is shown in Figure 2.5 compared with roller-compacted concrete 

and normally used concrete. The aggregate content is smaller than normal concrete that needs 

external energy to get compacted. 

Water Powder 

RCD 

Normal 

Air 

sec 
0 20 40 60 80 100 

Volumetric (%) 

Figure 2.5 Comparison of mix-proportioning of SCC with other types of conventional 
concrete (Okamura and Ouchi 2003) 

2.2 Concrete Rheology 

Rheology is defined as the science of deformation and flow of matter. It covers relationships 

between stress, strain, and time (Banfill 2003). Gj0rv (1998) reported that the measurement 

of rheological parameters could be used to evaluate the flowability and the compactability of 

fresh concrete. In terms of fresh concrete, the field of rheology is related to the flow 
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properties of concrete or with its mobility before setting takes place. ACI Committee 309 

(1993, 1997) defined compactability as an important rheological property of fresh concrete 

(Figure 2.6). Yen, et al. (1999) found that applying a rheological method could provide more 

stable results than any other test method in describing the flowability of the fresh concrete. In 

order to efficiently discuss fresh concrete compactability, flowability and shape stability, it is 

necessary to review the basic principles of concrete rheology before further discussing 

compactability, flowability, and shape stability. 

The Rheology of Fresh Concrete 

Stability 

1 Id. Is I . B ee mg egregat10n 

Compactibility 

I 

Mobility 

Relative Density 

Viscosity Cohesion Internal Friction 
Angle 

Figure 2.6 Parameters of the rheology of fresh concrete (ACI Committee 309, 1997) 

The rheological behavior of fresh concrete is characterized through its yield stress and 

viscosity. The yield stress is defined as the minimum stress required for a material to start 

flowing (Schramm 1994). When an external load (such as extrusion and vibration) or an 

internal load (self weight) is applied, fresh concrete is balanced by its yield stress of shear; it 

will remain static state and cannot flow but deforms plastically like a solid. If these loads 

exceed the yield stress, flow will start; this will be a dynamic process. Plastic viscosity is the 

ability of a material to resist flow. High plastic viscosity is characteristic of a less flowable 

suspension than low plastic viscosity. 

Different rheology models are currently available to describe the different rheological 

behavior of fresh concrete, including normal strength concrete and highly flowable concrete 

such as conventional SCC (Ferraris, et. al. 2001) (Figure 2.7). 
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Figure 2.7 Flow curves for concrete (Ferraris, et. al. 2001) 

De Larrard (1993) suggested that the Herschley-Buckley model is more suitable than other 

rheology models for conventional sec, because the rheological properties of conventional 

SCC are a low yield stress value together with an adequate plastic viscosity. Ferraris (1998) 

recommended that for normal-strength concrete, the Bingham model is more suitable. 

Tattersall (1991) also recommended using the Bingham model to describe fresh concrete 

rheology behavio, because the flow of most concrete follows this equation well. Two 

different rheology models for conventional SCC and conventional normal strength concrete 

are shown in Table 2.1. 

Table 2.1 Rheology equations for fresh concrete 

Type of concrete Model Equation Reference 

Normal-strength 
Bingham 1 = 'to + rir Ferraris 1999 

concrete 

Conventional SCC Herschley-Buckley 't ='to+ Kf1 Ferraris 1999 

Variable definitions: 
't =shear stress y =shear rate 't 0 =yield stress ri =viscosity 
K=constant 
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Figure 2.3 shows the typical flow curves according to the Bingham model. Ferraris, et al. 

(1998) stated that the flow behavior of fresh concrete is controlled by both its yield stress and 

plastic viscosity. The concrete in Figure 2.8 have the same yield stress but different plastic 

viscosities. In Figure 2.8 B, they have different yield stresses but the same plastic viscosity. 

Both yield stress and plastic viscosity are important in describing the flow behavior of fresh 

concrete. 

'I Yield 

Shear strain Shear strain 

Figure 2.8 Yield stress and plastic viscosity of fresh concrete (Ferraris, et al. 1998) 

Gjorv (1998) pointed out that shear stress is rate dependent. As shown in Figure 2.9, the 

shear stress is different at different shear rates. Mix B has lower shear stress at shear rate y1 

and thus will be considered to have the better workability. Mix A has lower shear stress at 

shear rate Y2 and thus will be considered to have the better flowability. Therefore, to obtain a 

more general characterization of concrete flowability, it is important to test the flow 

properties over a certain range of shear rates. By measuring the yield stress and plastic 

viscosity, a good basis for evaluating both the flowability and the compactability was 

obtained (Figure 2.10). 
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Figure 2.9 Relationship between shear rate and shear stress for two 
types of concrete A and B (Gj0rv 1998) 

Stiffer 
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Figure 2.10 Relationship between plastic viscosity and yield stress (Gjerv 1998) 

Table 2.2 shows the normal range of rheological parameters for different types of concrete 

based on the Bingham model. From pavement concrete to conventional SCC, the yield stress 

decreases. Conventional SCC has plastic viscosity comparable to pavement concrete. 

However, flowable concrete has lower plastic viscosity. 
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Table 2.2 Rheological parameters of different types of concrete (Banfill 2003) 

Material 
Pavement Flowable sec 
Concrete Concrete 

Yield stress (N/m2
) 500-2000 400 50-200 

Plastic viscosity (Ns/m2
) 50-100 20 20-100 

Fresh concrete rheology is an issue with almost all fresh concrete. Both yield stress and 

plastic viscosity relate to the properties of fresh concrete. In the current study, three key 

issues of fresh concrete, compactability, flowability, and shape stability are also directly 

related to rheology properties. The relationship among rheological properties and the 

compactability, flowability, and shape stability of fresh concrete will be discussed in detail 

later. 

For more information on fresh concrete rheology, the following references are highly 

recommended; they cover almost all issues in this field: Ferraris and de Larrard 1998; 

Ferraris, et al. 2001; de Larrard 1993; and Ferraris, et al. 2005. 

2.3 Mix Composition Effects on Fresh Concrete Rheology 

Almost all components of concrete and essentially every condition under which concrete is 

made may affect the fresh concrete rheology properties. These factors can be summarized as 

follows: 

• Water content 

• Cement characteristics and content 

• Aggregate 

• Chemical admixtures 

• Supplementary cementitious materials (SCMs) 

• Time and environmental conditions 

• Vibration 
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Interactions between constituents complicate the situation because they are not independent 

of each other in their effects. Only the effects of certain parameters, related specifically to 

this study, are presented here. 

1), Water content 

Water content is certainly the most important parameter with respect to the fresh concrete 

properties. Increase the water content while keeping the proportions of other constituent will 

decrease yield stress and viscosity of the concrete and increase the possibility of segregation. 

An increase in water content while keeping the proportions of other constituent produces a 

reduction in plastic viscosity and the flow resistance as well as the increase in the possibility 

of segregation. This reduction in both plastic viscosity and the flow resistance is so great that 

for low W IC, a water reducer or superplasticizer must be used to produce workable concrete 

(Banfill, 1994 ). 

2), Cement characteristics and content 

The workability and rheological properties of concrete are affected by physical and chemical 

properties of cements. Vom Berg (1979) studied the effect of specific surface area and 

concentration of solids on the flow behavior of cement paste. He found that the increase of 

cement fineness or solids concentration will lead an increase in the flow resistance and 

plastic viscosity of cement paste. The fineness of cement particles controls the balance of 

attractive and repulsive force between cement particles, which profoundly affects the flow of 

concrete. At a given water content, low cement content tends to produce harsh mixtures with 

poor workability, while high cement content produces better cohesiveness. 

3 ), Coarse aggregate effect 

The coarse aggregate effect on fresh concrete properties can be classified into different ways, 

aggregate volume fraction, gradation, shape, and surface texture. 

Denis (2002) examined the effect of coarse aggregate on the workability of sandcrete with 

two different mortar matrix and found that the effect of coarse aggregate concentration can 
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be significant. Geiker (2002) studied concrete yield stress and plastic viscosity and defined 

the relative yield stress and relative plastic viscosity as the ratio of concrete rheological 

parameters and mortar ones. He found that the relative yield stress and relative plastic 

viscosity significantly increased with the increasing of coarse aggregate volume fraction. 

Struble (1998) studied the rheology of cement paste as a function of concentration and found 

that both yield stress and viscosity depend on the amount and grading of the aggregate and 

properties of cement paste. Jamkar (2004) studied the coarse aggregate particle shape and 

texture effect on workability, finding that the volume of fine aggregate largely depends on 

the amount and grading of coarse aggregate and properties of cement paste. 

Malhotra ( 1964) studied the correlation between particle shape and surface texture of fine 

aggregates and their water requirement. He found that crushed sand tends to have a higher 

water requirement than natural sand because of the higher angularity and difference in 

surface texture. Angular fine aggregate particles interlock and reduce the freedom of 

movement of particles in the fresh concrete. 

Kosmatka (2002) also found that workability of fresh concrete and bond between cement 

paste and a given aggregate is affected by particle shape and surface texture. He found that 

the water content must be increased to maintain workability if angular aggregate is 

substituted for round aggregate. 

Quiroga (2004) studied the effect of aggregate characteristic on the performance of concrete. 

He confirmed that aggregate blended with well-shaped, round, and smooth particles requires 

less paste for a given slump than that blended with flat, elongated, angular, and rough 

particles. 

Summarily, the effect of aggregate on fresh concrete rheology property is related to the 

amount of paste or mortar. For coarse aggregate, the larger the particles, the fewer the surface 

areas, which means that a thicker coating is required and it makes particles slide easily. On 
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the other hand, the smaller particles, which have more surface area, require a thinner coating, 

which leads to the interlocking of smaller particles. In other words, for the same amount of 

mortar, coarse aggregate with different gradation will show different workability and 

different engineering properties such as shrinkage. 

Particle shape and surface texture also affects the amount of paste needed in the concrete 

mixture. If the coarse aggregate used in concrete is gravel, which is naturally smooth and 

round, the lower surface area (compared to the crushed stone) will decrease the amount of 

paste required to coat each individual particle to achieve certain workability. Meantime, the 

smooth surface of gravel make particles easy to slid on each other, and then make the 

concrete highly flowable. 

4), Chemical admixtures 

Table 2.3 lists the most common types of admixtures and indicates their effect on rheology. 

For more details on admixtures in general, the papers of Tattersall (1991) or Tattersall and 

Banfill (1983) are highly recommended. 

Because there is only a limited amount of experimental data on the subject, and because of 

possible interactions between the cement, mineral admixtures or other admixtures, it is very 

difficult to predict the specific effect of any particular mix without preliminary testing. 

Experimentation is still the best way to obtain the information. Figure 2.11 shows the usual 

effect of the addition of water or different admixtures. When more than one admixture is 

added, the overall effect cannot be predicted, except for the general trend. 
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Table 2.3 Concrete admixtures (Tattersall and Banfill 1983) 

Admixture 

Accelerators 

Retarders 

Water-reducers 
(WR) 

Superplasticizers 
(SP) 

Air-entraining agents 
(AEA) 

Viscosity-modifying 
admixtures (VMA) 

Typical material 

Sodium aluminate 
Sodium silicate 
Lime 
Potassium hydroxide 
Calcium chloride 
Calcium format 
Sodium nitrite 
Hydroxycarboxylic acids 
sugars 

Calcium and sodium 
lignosul phonate 

Sulphonated melamine-
formaldehyde resin 
Sulphonated naphthalene-
formaldehyde resin 
Mixture of saccharate~ 
and acid amides 
Wood resin 
Fats 
lignosulphonates 

Admixture 
AEA: air 
entraining 
~P· 

+AE 

+SP 

Plastic viscosity 

Effect on rheology 

Increased rate of change with time 

Reduced rate of change with time 

Low reduction m viscosity 
high reduction in yield stress 

Low reduction m viscosity 
high reduction in yield stress 

Significant increase in workability 
Reduce both yield stress and 
viscosity 
Increased viscosity with yield 
stress unchanged 

Figure 2.11 Effect of addition of water and different admixtures (Gj0rv 1996) 
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Although water reducers and superplasticizers produce generally similar effect (large 

reduction of yield stress (flow resistance) and small reduction of plastic viscosity), they are 

treated differently because the effect of superplasticizers are much greater and also because 

they are usually used for low W IC concrete and most of times used with Viscosity-modifying 

admixtures (VMA). As reported by Tattersall (1991), up to a certain dosage (0.15% of 

cement weight) the addition of lignosulphonate produces a large reduction in yield stress and 

a significant reduction in plastic viscosity. At higher addition rates, there is no further 

reduction of yield stress, but a proportional reduction in plastic viscosity. 

The increase in the air content produces a rapid decrease in both yield stress and plastic 

viscosity. For air content higher than 5%, there is no significant reduction in plastic viscosity 

but the yield stress reduce greatly (Tattersall and Banfill 1983). 

5), Fly ash 

The absolute volume of cement plus fly ash normally exceeds that of cement in similar 

concrete mixtures not containing fly ash. This is because the fly ash normally is of lower 

density and the mass of fly ash used is usually equal to or greater than the reduced mass of 

cement. While it depends on the proportions used, this increase in paste volume produces a 

concrete with improved plasticity and better cohesiveness (Lane 1983). In addition, the 

increase in the volume of fines from fly ash can compensate for deficient aggregate fines. 

Fly ash changes the flow behavior of the cement paste (Rudzinski 1984); the generally 

spherical shape of fly ash particles normally permits the water in the concrete to be reduced 

for a given workability (Brown 1980). Ravina (1984) reported on a Class F fly ash that 

reduced the rate of slump loss compared to non-fly ash concrete in hot-weather conditions. 

Class C fly ash generally has a high proportion of particles finer than 10 µm, which favorably 

influence concrete workability. Data on the rheology of fresh fly ash-cement-water mixtures 

was reviewed in detail by Helmuth (1987). 
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Using fly ash in air-entrained concrete mixtures requires changes in dosage rate of the air­

entrained admixture. Some Class C fly ashes can reduce the amount of air-entrained 

admixture, particularly for those with significant water-soluble alkalies in the fly ash (Pistilli 

1983). Required air-entraining admixture dosages may also increase with an increase in the 

coarse fractions of a fly ash (Lane 1983). 

6), Mixing conditions 

The mixing conditions, especially mixing sequence and mixer type affect the workability and 

rheological performance of cementitious materials. The change from the least serve to the 

most severe mixing procedure can cause both the yield stress and plastic viscosity to decrease 

by about 60%, at the same time the width of the hystersis loop decreased. 

Yang (1995) found that during the first two hours of hydration, mixing methods have strong 

effect on cement paste rheological properties. Poorly mixed (low mixing energy) cement 

paste has more rapidly-increasing peak shear stresses than well-mixed cement paste (high 

mixing energy). Williams (1999) studied the effect of mixing shear rate on yield stress and 

viscosity of cement paste by using a rheometer with different pre-shear rate. The results 

showed that well mixed pastes have a lower plastic viscosity and hence improved flowability. 

7), Time and environmental conditions 

Concrete is a time-dependent material. Freshly mixed concrete loses its flowability with time 

due to the process of hydration. The reduction in flowability is generally attributed to loss of 

water by evaporation or absorbed into aggregate, and from chemical reaction with the 

cementitious materials in early hydration reactions. Further, the rate of water loss increases if 

the temperatures increased. 

The following publications are currently available on the effect of time and environmental 

conditions on cement paste and concrete rheological properties and flowability: Jiang 1993; 

Laboutet 1998; Nachbaur 2001; Petit 2005; and Struble 1995. 
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2.4 Compactability of Fresh Concrete 

As defined by ACI Committee 309 (1997), consolidation is the process of inducing a closer 

arrangement of the solid particles in freshly mixed concrete or mortar during placement by 

the reduction of voids, usually by vibration, centrifugation, rodding, tamping, or combination 

of these actions. 

Glanville ( 193 8) defined the compactability of fresh concrete as the property of the concrete 

which determines the amount of useful internal work necessary to produce full compaction. 

Ritchie (1962) attempted to define the flow of concrete by linking it to compactability by 

measuring relative density and conducting tri-axial testing of fresh concrete. He found that 

the fresh concrete's compactability is directly related to its mobility and internal friction. ACI 

Committee 309 (1997) also defined the compactability as one important property related with 

fresh concrete workability. 

ACI 309 committee (1997) reported the research findings about fresh concrete under the 

condition of vibrating, which only qualitatively explains the compaction of concrete in terms 

of material characteristics and mix design. Yamaguchi, et al. (2000) and Nisikawa, et al. 

(2000) studied the relationship between fresh concrete flowability and compactability. They 

confirmed that the compactability of fresh concrete is related to its flowability. 

Kokubu and Ueno (1996) studied the compactability of extremely dry concrete. Their results 

can be summarized as follows: 

• Compactability increases as the amount of sand increases. The reason they gave is 

that more sand can increase the distance between coarse aggregate particles, and then 

decrease the friction between them. 

• Water content has significant effect on fresh concrete compactability. 

• With constant water content and coarse aggregate content, sand with larger fineness 

modulus increases the compactability or finer sand reduces compactability. 
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The only limitation of their research is that it did not go beyond the range of dry concrete. 

Whether the results are applicable on all kinds of concrete is not confirmed. 

Liang, et al. (2003, 2004) studied the compactability of concrete with slump varying from 1 

inch to 5 inches using the same idea adopted by Kokubu and Ueno (1996). They studied the 

effects of different types of coarse aggregate, the variation of sand to total aggregate ratio, 

water content, and slump loss of concrete on the compaction completion energy of concrete. 

Their results can be summarized as follows: 

• Compactability increases as the water content increases. As the water content 

increases, slump value also increases. The reason is that the increased water content 

increases the distance between coarse aggregate particles and then decrease the 

friction between them. 

• Slump value has significant effect on fresh concrete compactability. As slump value 

increases, the compactability increases. 

• Amount of mortar plays an important role in fresh concrete compactability. With the 

increase of mortar content, the concrete compactability increases. 

Although Liang's study was focused on the compactability of fresh concrete with a large 

range of flowability (slump value from 1 to 5 inches), they only examined the compactability 

of fresh concrete with external consolidation energy, the self-compactability was not 

evaluated in their study. 

Okamura (1996, 1997) studied workability and promoted a new concept of self­

compactability. In workability terms, self-compactability signifies the ability of the concrete 

to flow after being discharged from the pump hose, a skip or similar, only through gravity 

and to fill intended spaces in the formwork to achieve a zero-defect and uniform-quality 

concrete (Skarendahl and Petersson 2000). 

Okamura and Ouchi (2003) pointed out that to achieve good filling ability, the concrete must 

have small inter-particle friction and the paste must have excellent deformability. They found 
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reducing the friction between the solid particles, which includes coarse and fine aggregates 

and all types of powder, is a superior way to make concrete deform well. Currently, 

popularly accepted method to decrease the friction of aggregates is to increase the aggregate 

inter-particle distance. This can be achieved by reducing the aggregate content, or in other 

words, increasing the paste content. 

To achieve self-compactability, Okamura and Ozawa (1995) employed the followingmethods: 

1. Limited aggregate content 

2. Low water-to-powder ratio 

3. Use of superplasticizer 

The degree of packing of coarse aggregate in conventional SCC they used is approximately 

50% to reduce the interaction between coarse aggregate particles when concrete deforms. 

The degree of packing of fine aggregate in conventional SCC mortar is approximately 60% 

to limit shear deformability. The conventional SCC they developed has high flowability as 

well as ability to resist segregation. 

After the first development of conventional SCC in Japan, more significant studies have been 

done on how to achieve the balance between flowability and ability to resist segregation. 

Saak, et al. (2001) and Skarendahl and Petersson (2000) pointed out that it is important for 

paste to have good flowability (low yield value) and meantime have enough resistance to 

segregation (high yield value and moderate viscosity) to secure the good filling ability of 

concrete. The most popular way to increase the deformability of the paste is (1) Using 

superplasticizer and (2) Balancing the water-to-powder ratio. 

Segregation of fresh concrete is described by in-homogeneity in the distribution of 

constituent materials. It can be categorized as the segregation between water and solid 

(bleeding of water) and aggregate segregation. The former situation can be avoided by 

reducing the amount of movable water in the mixture. Two methods can be used to achieve 

this goal, using less water or lower water-to-powder ratio and using powder materials with 
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high surface area, such as fly ash (ACI Committee 232, 1996). Saak, et al. (2001) pointed out 

that aggregate segregation is usually caused by the low yield stress of the paste. Skarendahl 

and Petersson (2000) found it can be avoided by increasing both friction and cohesion of 

paste phase. But increasing cohesion is much more beneficial than increasing friction, 

because increasing friction also decrease the deformability. In order to resist segregation, 

aggregates with limited content and reduced maximum size are normally used together with 

the viscosity agent and lower water-to-powder ratio. 

Saak, et al. (2001) found that the segregation of aggregate can be voided by control the 

rheological properties of paste. In static condition, the minimum yield stress for the paste is 

required to balance the self-weight of coarse aggregate to make it not segregate. Under 

dynamic condition, the segregation of coarse aggregate can be eliminated by paste with 

enough viscosity. 

2.5 Flowability of Fresh Concrete 

Concrete in its fresh state can be described as a fluid, provided that a certain degree of flow 

can be achieved and that concrete is homogeneous. Ferraris, et al. (2001) defined this 

constraint as a slump of at least 4 inches and no segregation. As discussed previously, the 

flowability of fresh concrete is described as its rheological properties. Almost all items 

related to the concrete rheology were discussed at the beginning of this chapter; no further 

discussion will be provided here. 
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2. 6 Shape Stability of Fresh Concrete 

Shape stability is defined as the ability that fresh concrete can keep the shape (no 

deformation) after demodel. Bird, et al. (1983) mentioned that the flow of fresh concrete 

under its own weight depends critically on both the geometric and material properties. The 

initial flow of fresh concrete is controlled by its yield stress, which is the stress that must be 

reached for the material to traverse from solid to fluid-like behavior. For conventional 

concrete, the collapse of vertical fresh concrete slop is directly related to its yield stress 

(Dunn, et al. 1980; Anderson and Richards 1987; and Christensen 1991). The two parameters 

of the Bingham model, yield stress and plastic viscosity, have been investigated using the 

slump test (Murata 1984; Christensen 1991; Saak, et al. 2004). It is now believed the slump 

of fresh concrete is a reliable indicator of the shape stability and yield stress. 

Christensen (1991) firstly evaluated the slope stability of fresh concrete in order to study the 

relationship between its slump value and yield stress. In his analysis, the yield value 

corresponding to failure of the two dimensional slope illustrated in Figure 2.12 was 

determined using the collapse criterion for soil material presented in Dunn, et al. (1980) as a 

series of curves relating collapse yield value to the slope angle. It was found that the failure 

criterion for soil material is not suitable for concrete, but the collapse of fresh concrete slope 

is directly related to its yield stress. 

Murata (1984) published his model relating slump to yield stress based on a simple force 

balance analysis and the assumption that the slump of fresh concrete is affected by its yield 

stress and not by its viscosity. In Murata' s model, the deformation of the slump cone is 

considered as the part of the slump cone above the cross section contemplated settling and 

coming to rest when the maximum shear stress acting on the cross section is gradually 

decreased, through increase in the cross-sectional area accompanying progress of 

deformation, to become equal to the yield value (Figure 2. 13). Evidences were given to 

show that this remarkably simple model of the slump process first proposed by Murata (1984) 

and corrected by Christensen (1991), is a good predictor of conical slump test results 
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(Schowalter and Christensen 1997; Saak, et al. 2004 ). This model can also be applied on 

cylinder, not only cone (Figure 2.14). Other attempts have been conducted on finite element 

studies on slump test using different material models relating to the yield stress and plastic 

viscosity (Davidson, et al. 2000; Sader and Davidson 2004). All of these studies show good 

prediction on collapse of concrete cylinder. It is further confirmed that the collapse or 

deformation of concrete cylinder is directly related to its yield stress. In other words, the 

deformation and the shape after deformation is mainly controlled by yield stress. To study 

the yield stress is critical in studying the shape stability of fresh concrete. The successful 

application of Murata's model further confirmed that the deformation/flow is controlled by 

its yield stress. At any point in the concrete, if the shear stress acting on this point is less than 

the yield stress, the material cannot deform. For a concrete body with certain geometric 

properties, it is its yield stress that controls its deformation. 

Figure 2.12 Illustration of the slope used in the slop stability calculation (Christensen1991) 
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Figure 2.13 Deformation of slump cone (Christensen 1991) 
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Figure 2.14 Graphical illustration of slump test showing measurement principle and 
typical deformed final shape (Sader and Davidson 2004) 

2. 7 Discussion on shape stability and flow ability of fresh concrete 

"Green" strength is defined as the ability of an incompletely cured material to undergo 

removal from the mold and handling without distortion. High green strength means good 

collapse resistance. The value of green strength depends critically on both the geometric and 

material properties. Figure 2.15 shows two cylinders with different height and made of same 

fresh concrete. According to Murata's model (1984), the shear stresses acting on the bottom 

cross section of the cylinders are different due to different height of cylinders. If the shear 

stress acting on the bottom of cylinder is less than the yield stress, the cylinder will not 
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deform. Once the shear stress acting on the bottom of cylinder exceeds the yield stress, the 

deformation will happen. In this case, the green strength of fresh concrete is directly related 

to its yield stress. 

The complexity between flowability and shape stability is that the fresh concrete will deform 

or flow under certain applied load and then hold a certain shape without any external effect. 

To ensure the shape stability of fresh concrete slab for certain height, it is important for it to 

have the minimum yield stress. This is the criteria for achievement of fresh concrete for 

pavement. On the other side, the fresh concrete can flow under external load, such as 

extrusion and vibration or internal effort such as big volume of fresh concrete (Figure 2.16). 
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Figure 2.15 Different fresh concrete cylinders 
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2.8 Test Method Related to Fresh Concrete Compactability, Flowability, and Shape 

Stability 

Since the early 20th century, a large number of testing methods related to fresh concrete 

compactability, flowability, and shape stability have been developed. Koehler (2003) 

summarized previously developed equipment; up to 61 different test methods for measuring 

concrete workability were described in the report. Most of them are empirical and designed 

for a particular project. In this thesis, only those directly related to the current study are 

reviewed. 

2. 8.1 Compactability Measurement 

Compacting Factor Test 

The compacting factor test was developed in Britain in the late 1940s and has been 

standardized as the British Standard 1881-103. The apparatus (Figure 2.17) consists of a rigid 

frame that supports two conical hoppers vertically aligned above each other and mounted 

above a cylinder. The top cone is filled with well-mixed loose concrete and weighed. It is 

then allowed to drop to the lower cone and then to the bottom cylinder. The bottom cylinder 

is smoothed off level, and any surplus concrete on the outside wiped away. The cylinder is 

then weighed. The difference between the weight of the concrete placed in the top cone and 

that of the cylinder provides a measure of workability. The higher the weight of the cylinder 

to the cone, the more workable the concrete, but the difference should not be more than 1. 
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Figure 2.17 Compacting Factor Test apparatus (Koehler, et al. 2003) 

This test also measures the workability of concrete in a more precise way than does the 

slump test. It measures the weight of uncompacted concrete and compares it with the weight 

of partially compacted concrete. 

There is a relationship between the results of this test and compactability. In practice, 

compaction is normally achieved by vibration and not by dropping the concrete from a 

certain height. In this case, the test is far from representative of the "real world." Also, some 

energy is lost in friction along the cone surface. This energy loss can be important; currently 

it is difficult to evaluate this energy, especially for low workability concrete. But for slip­

form pavement concrete, since the fresh concrete will be poured into the slip form of the 

paver from a limited but almost constant height, if the later vibration from vibration bars is 

not considered, this test is suitable to simulate this progress. To minimize the loss of friction, 

only one conical hopper can be used; this only means less external energy to compact 

concrete. This new compacting factor will be discussed later in Chapter 3. 
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Compaction Test (Walz Test) 

This test was developed by Walz in the 1960s and is now a German standard (DIN 1048). 

This test is applicable for low to high workability concretes. It measures the volume of a 

concrete sample in a standard container before and after full compaction. The compaction is 

generally achieved by vibration. It is often referred to as the Compaction Index test. 

The apparatus essentially consists of a metallic box 200mm x 200mm x 400mm (Figure 2.18). 

The container is filled with fresh concrete without compaction. After the top of the filled 

container has been struck off level, the concrete is compacted by vibrating table or rod 

tamping. Total compaction should be achieved before measuring the distance from the top of 

the concrete to the top of the container. The degree of compaction is then calculated as the 

height of the container divided by the average height of the compacted concrete. Typical 

values range from 1.02 to 1.05. 
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Figure 2.18 Compaction Test apparatus (Koehler, et al. 2003) 

Intensive Compaction Test 

The intensive compaction test is a gyratory compactor used to measure the workability 

(mostly the compactability) of concrete mixture with slump less than 0.5 inch. 
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The test apparatus is a machine that applies compression and shear forces to a concrete 

specimen in a cylindrical mold while recording the varying density of the specimen (Figure 

2.19). 
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Figure 2.19 Intensive Compaction Test (Koehler, et al. 2003) 

To determine the compactability of c concrete mixture, the density of the concrete is plotted 

versus the number of working cycles of the pistons. Concrete mixes can be compared the 

density after same number of cycles under same pressure or the number of cycles and 

pressure to obtain same density. These results show how easy or difficult a concrete mix can 

get compacted. This is the most accurate measuring method to evaluate the compactability of 

fresh concrete even though the change in mixture proportions is minor. But it is only 

applicable to very stiff concrete. For normal concrete or high flowable concrete, it is not 

applicable because of the loss in weight of concrete due to bleeding. But if a sealed 

cylindrical mold is used, this problem can be solved, but in the mean time, the shear forces 

will not be applied. This needs more studies on the pressure and shear forces applied to the 

concrete specimens. 

Compactability Test Used in Japan 

This test was first developed by Kokubu (1996) and then modified by Liang (2004). The 

basic apparatus for this test includes a rigid cylinder container with a vibration table and a 

data collecting system to measure external energy applied on concrete and volume change of 

concrete (Figure 2.20). During testing, fresh concrete is poured into the cylinder container, 
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and external effort is applied to compact it. Both compaction energy and volume change of 

concrete are captured. The external energy to compact concrete can be controlled during 

testing. 
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Figure 2.20 Compactability Test apparatus (Kokubu 1996 and Liang 2004) 

This testing method is widely used in Japan to evaluate the compactability of fresh concrete. 

It has been shown to be an efficient method in compactability studies (Kokubu 1996 and 

Liang 2004). 

2.8.2 Flowability and Shape Stability Measurement 

Slump Test 

The slump test is the most commonly accepted method used to measure the consistency of 

concrete (ASTM C143). The apparatus consists of a mold in the shape of a frustum of a cone 

with a base diameter of 8 inches, a top diameter of 4 inches, and a height of 12 inches (Figure 

2.21). The slump cone is filled with fresh concrete in three layers, with tamping between 

each to remove voids. The concrete is leveled off with the top of the cone. On removing the 

cone, the slump is measured. The higher the slump, the higher the flowability. The slump test 

can be used with fresh plastic concrete containing coarse aggregate with a maximum size of 

1.5 inches. 
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Figure 2.21 ~lump Test (Koehler, et al. 2003) 

Originally, the slump test was developed to measure the effect of water content on the 

workability of fresh concrete. 

Although the slump test does not directly measure the work needed to compact the concrete, 

it gives a reasonable indication of the how easily a mix can be placed and is simple to 

perform. The test is only suitable for reasonably workable, cohesive mixes. Very stiff mixes 

do not settle enough for useful measurements to be made and uncohesive mixes tend to shear 

or collapse. The limits of its proper application correspond to slump between 0.5 to 9 inches. 

In other words, this method does not work well for very stiff or very fluid concrete. Other 

factors beside the variation in water content may cause variations in slump measurement: 

Mittelacher (1992) studied operator and other influences. Almost any change in mix 

composition or in material characteristics will affect the slump. The time history is also 

important in measuring slump, because concrete is known to lose slump with time. This 

phenomenon can be very important when superplasticizers are being used (Whiting and 

Dziedzic 1989) 

Murata (1984) developed an analytical expression relating yield stress with slump. His model 

is based on former work conducted by Tattersall and Banfill (1983), who used coaxial 

cylinder experiments on fresh concrete and found that it can be interpreted by using the 

Bingham model. They also concluded that plastic viscosity has little effect on the value of 
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slump obtained but is strongly related to yield stress. Murata related the value of slump to 

fresh concrete yield value and density. The results he obtained are summarized in Figure 2.22. 

Figure 2.22 Yield value vs. slump (Murata 1984) 

Christensen ( 1991) corrected the integration errors in the original Murata model and 

converted the units to dimensionless quantities. Christensen's model is independent of the 

particular material under investigation and the size of the slump cone. However, Christensen 

did not experimentally confirm the accuracy of the model. The predicting cure based on 

Christensen's model is shown in Figure 2.23. 
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Figure 2.23 Analytic prediction of Christensen's model (Christensen 1991) 

During the past twenty years, several researchers revised Murata's analysis works (Rajani 

and Morgenstern 1991; Pashias and Boger 1996; Schowalter and Christensen 1998; 

Chamberlain, et al. 2003; and Saak 2004). The simple model of the slump originally 

developed by Murata has proven to be a good predictor of conical slump test results. Because 

of the successful application of theoretical rheology models on the slump test, more 

complicated simulations have been conducted using the finite element method. 

Tanigawa, et al. (1986) studied the effect of yield stress and plastic viscosity on slump test 

results by applying the finite element method to the slump test. The rheological properties 

were obtained from viscometer and parallel-plates plastometer. Their results are shown in 

Figure 2.24. 
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Figure 2.24 Effect of rheological constants on slump and spread {Tanigawa, et al.1986) 

Tanigawa, et al. found that slump value is very sensitive to yield stress. The spread value is 

considerably affected by the rheological constants when the yield stress and the plastic 

viscosity are both small. 

Hu, et al. ( 1996) developed an expression for yield stress in terms of slump and density based 

on a finite element model of a slump test (Equation 2.1 ). 

't = _2_(300- s) 0 270 
(2.1) 

where 't 0 is yield stress in .Pa, s is slump in mm, and p is density in kg/m3
• The finite element 

calculations were performed for concrete with slumps ranging from 0 to 1 inch. The equation 

is not applicable for concrete with a plastic viscosity greater than 300 Pa·s. Experimental 

results from the BTRHEOM rheometer showed agreement between Equation 2.1 and test 

results. 
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Modified Slump Test 

Tanigawa (1989, 1991) first modified conventional slump tests to study the relationship 

between slump and time. The experimental setup is shown in Figure 2.25. They used a pair 

of displacement transformers to measure the time duration for concrete to slump. Their 

testing procedure was the same one recommended by ASTM (ASTM C143). They found that 

the slump-time curve could be simulated by finite element analysis of the fresh concrete, 

assuming it is a Bingham material. The slump-time curve depends on both yield stress and 

plastic viscosity. 

Figure 2.25 Modified slump test of Tanigawa, et al. (1989, 1991) 

Ferraris and de Larrard (1998) modified slump tests based on Tanigawa's work. Their slump 

test setup almost exactly followed Tanigawa's design shown in Figure 2.25. Instead of 

measuring the whole slump of concrete like Tanigawa, Ferraris and de Larrard measured 

partial slump (Figure 2.26). Their modified slump test is applicable on concrete with a slump 

of at least 4 inches. The concrete was placed in the same manner as in the standard slump test 

(ASTM C143). 
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Figure 2.26 Modified slump test of Ferraris and de Larrard (1998) 

Based on modified slump test results, an estimation of the fundamental rheological 

parameters was established. The yield stress of concrete can be calculated from its slump and 

density by the following empirical equation: 

't 0 = _£_(300-s) + 212 
347 

where -r0 is yield stress of concrete (Pa), pis density (kg!m\ ands is slump (mm). 

(2.2) 

The plastic viscosity of concrete can be calculated from its density, slump, and slump time by 

the following equations: 

µ = p · T · 1.08 .10-3 
• (s-175) for 200<s<260 mm 

µ = 25 · 10-3 
• p · T for s<200 

(2.3) 

(2.4) 

Nomographs based on the above equations have been developed that allow quick 

determination of yield stress and plastic viscosity in the field. 

The modified slump test facilitates better quality control of fresh concrete in the field. The 

final slump combined with the unit mass of the concrete allows an estimation to be made of 

the yield stress of the concrete in the field for concrete with slump greater than 4 inches. The 

slump time combined with the preceding measurements can provide an estimate of the plastic 

viscosity for concrete with a slump between 4.8 to 10.4 inches. 
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IBB Concrete Rheometer Test 

Beaupre and Mindness ( 1994) developed the IBB rheometer in Canada, based on the two­

point device developed by Tattersall (1979). It consists of a cylindrical container holding the 

concrete, with an H-shaped impeller driven through the concrete in a planetary motion. The 

speed of the impeller rotation was first increased to maximum rotation rate and then the 

rotation rate was decreased in six stages, with each stage having at least two complete center 

shaft revolutions. The torque (N ·m) generated by the resistance of the concrete specimen to 

the impeller rotation was recorded at each stage as well as the impeller rotation rate 

(revolutions per second) measured by the shaft tachometer. The torque versus the impeller 

rotation rate can be approximated by a linear function, whose slope is related to the plastic 

viscosity and intercept, at zero rotation rate, is related to the yield stress. The output of the 

IBB concrete rheometer can be described in the following equation: 

T = g + h · N (2.5) 

where T is torque and N is rotation speed; g is a yield stress related term and h is a plastic 

viscosity related term. 

Because the geometry and flow patterns are too complicated in this rheometer, the values 

obtained are only proportional to the plastic viscosity and yield stress of the concrete. The 

units used are N·m and N·m·S for yield stress and viscosity, respectively. The device has 

been successfully applied to a wide range of concrete workability (Koehler, et. al. 2003) 

2.8.3 Test Methods/or Conventional SCC 

For conventional SCC, workability tests can be broadly split into three categories: filling 

ability tests, passing ability tests, and segregation resistance tests. Currently, at least eight test 

methods have been developed for conventional SCC (Koehler, et al. 2003). For current 

studies, as discussed previously, only slump flow test was discussed below. 



www.manaraa.com

49 

Slump Flow Test 

The slump flow test is the simplest and most widely used test method for conventional SCC 

(Koehler, et al. 2003). It is based on the standard slump test. To perform the test, a 

conventional slump cone is placed on a rigid, non-absorbent plate and filled with concrete 

without tamping. The plate must be placed on a firm, level surface. The slump cone is lifted 

and the horizontal spread of the concrete is measured. Additionally, the time required for the 

concrete to spread to a diameter of 50 cm should be measured to evaluate its flowability. 



www.manaraa.com

3.1 Materials 

50 

CHAPTER3 

EXPERIMENTAL WORK 

ASTM Type I Portland cement (Lafarge) that met the requirements of ASTM C 150 and 

Class C and Class F fly ash that met the appropriate requirements of ASTM C 618 were used. 

The chemical and physical properties of the cementitious materials used in this study are 

summarized in Table 3.1. 

Table 3 .1 Chemical and physical properties of cementitious materials 

Components Type I Cement Class C Fly Ash Class F Fly Ash 

Cao 63.01 27.04 1.55 

Si02 20.62 35.61 46.02 

Alz03 4.47 18.90 23.40 

Fe203 3.29 6.03 24.09 

MgO 3.10 4.64 0.73 

KzO 0.68 0.38 1.78 

Na20 0.10 1.73 0.45 

S03 2.76 1.69 0.37 

Ti02 0.35 1.59 1.07 

Mean size (µm) 23.7 13.6 24.1 

Specific gravity 3.15 2.66 2.41 

Fineness 373 Not measured Not measured 

Limestone with a nominal maximum size of 1 inch was used for all mixes, and gravel with a 

nominal maximum size of 1 inch was used to replace limestone for selected concrete mixes. 

The limestone coarse aggregate has a specific gravity of 2.65 and an absorption of 3.0%, 

while the gravel coarse aggregate has a specific gravity of 2.5 and an absorption of 1. 7%. 

River sand with a specific gravity of2.70, a fineness modulus of 3.1, and absorption of 1.2% 

was used as fine aggregate for all of the concrete mixtures. All aggregate was recombined 



www.manaraa.com

51 

and prepared to reach SSD conditions before concrete casting. The gradation of the 

aggregates will be provided in the next section. Cold tap water was used for all mixing water. 

Rheomac VMA 358, Acti-Gel 208, and "W. R. Grace Daracem 19" superplasticizer were 

used as admixtures. An air-entraining agent (AEA), Daravair 1400, was used in all mixes. 

3.2 Mix proportions 

A total of 46 concrete mix proportions, listed in Table 3.2, were used in this study. All mix 

proportions were classified into eight groups. A previous study showed that when the sand­

to-aggregate ratio (s/A) was about 45%, a minimum total energy is required to compact fresh 

concrete (Liang, et al. 2003). The s/ A of 44% was thus used in the present study, which is 

also consistent with Iowa DOT C3 mix design. 

Below, an explanation of the various aspects of the mix designations in Table 3.2 is as 

follows: 

- The first letter "P" in Group 2 designates cement paste content. The effect of the 

cement paste content on concrete properties was evaluated for all mix proportions in 

this group. The number after the "P" designates the percentage of cement paste 

content according to the weight of the total concrete. 

- The first two letters "FA" in Groups 3 and 4 designate fly ash. The effect of fly ash 

on concrete properties was evaluated for all mix proportions in these two groups. The 

third letter in the middle designates the type of fly ash, either Class C or F. The last 

two-digit number designates the percentage by which fly ash replaced the cement 

according to weight. 

- The first two or three letters--"SP," "VMA," and "AG"--in Groups 5, 6, and 7 

designate Superplasticizer, viscosity-modifying admixture, and Acti-Gel, respectively. 

The last two-digit number designates the dosage of the three above items according to 

the weight of the cementitious materials. 

In Group 8, the letters "L" and "G" designate limestone and gravel, respectively. The last 

two-digit number designates the ratio of gravel and limestone according to weight. 
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Table 3 .2 Mixture proportions (all in lb/yd3
) 

Group Number OPC 
Fly Ash 

Water 
!Class C Class F 
! 

series A 810 0 0 
1 series B 567 243 0 

series C 603 0 0 

P-23 603 I 0 0 i 

2 P-27 750 0 0 

P-29 810 0 0 

P-30 850 I 
i 

0 0 

FA-C20 648 162 0 

3 
FA-C30 567 243 0 

FA-C40 486 324 0 

FA-C50 405 405 0 

FA-F20 648 0 162 

4 
FA-F30 567 0 243 

FA-F40 486 0 324 

FA-F50 405 0 405 

SP-0.5 810 0 0 

5 SP-1.0 810 0 0 

SP-1.5 810 0 0 

SP-2.0 810 0 0 

VMA-0.2 567 243 0 

6 
VMA-0.3 567 243 0 

VMA-0.5 567 243 0 

VMA-0.67 567 243 0 

AG-0.2 567 243 0 

7 AG-0.3 567 243 0 
AG-0.5 567 243 0 

AG-0.67 567 243 0 
G:L=1:3 567 i 

! 
243 0 

8 G:L=l:l 567 243 0 
G:L=3:1 567 I 243 0 
G:L=l:O 567 243 0 

Notes: 
P = Paste 
FA-C20 =Fly Ash Class C, 20% replacement of cement 
FA-F20 =Fly Ash Class F, 20% replacement of cement 
SP = Superplasticizer 

311 

308 

260 

260 

321 

350 

365 

308 

308 

308 

308 

308 

308 

308 

308 

308 

308 

308 

308 

308 

308 

308 

308 

308 
308 
308 
308 
308 
308 
308 
308 
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Sand Coarse Agg. 
Admixtures 

SP 

1269 1620 

1269 1620 

1339 1684 

1269 1620 

1269 1620 

1269 1620 

1269 1620 

1269 1620 

1269 1620 

1269 1620 

1269 1620 

1269 1620 

1269 1620 

1269 1620 

1269 1620 

1269 1620 4.0 

1269 1620 8.0 

1269 1620 12.0 

1269 1620 16.0 

1269 1620 

1269 1620 

1269 1620 

1269 1620 

1269 1620 
1269 1620 
1269 1620 
1269 1620 
1269 1215L+405G 

1269 810L+810G 
1269 405L+1215G 
1269 1620G 

VMA = Viscosity-modifying admixture 
AG=Acti-Gel 
L = Limestone 
G =Gravel 

VMA AG 

1.35 

2.70 

4.05 

5.40 

1.62 
2.43 
4.05 
5.40 

W/C 

0.38 

0.38 

0.43 

0.43 

0.43 

0.43 

0.43 

0.38 

0.38 

0.38 

0.38 

0.38 

0.38 

0.38 

0.38 

0.38 

0.38 

0.38 

0.38 

0.38 

0.38 

0.38 

0.38 

0.38 
0.38 
0.38 
0.38 
0.38 
0.38 
0.38 
0.38 
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All mix proportions in Group 1 were designed to evaluate the effect of coarse aggregate 

gradation on concrete properties. Six different gradations were used for each mix proportion 

series in this group (A, B, and C series). The different gradations are shown in Table 3.3. 

Gradation G 1 is the one currently used in the Iowa DOT C3 mix. 

G2 and G3 are the lower and upper gradation limits in ASTM C33 (Standard Specification 

for Concrete Aggregate). G4 is the intermediate gradation of ASTM C33. G5 is an optimum 

aggregate gradation that meets the 0.45 power gradation curve. G6 is a trial gradation that 

was designed to limit the amount oflarge particles (3/4"-l") in G2. 

Table 3 .3 Aggregate gradation 

Coarse Aggregates % Passing Sand,% Sieve Size 
Gl G2 G3 G4 GS G6 Passing 

l" 100.0 100.0 100.0 100.0 100.0 100.0 --
3/4" 90.0 55.0 90.0 73.0 77.0 80.0 --
1/2" 50.0 30.0 65.0 46.0 48.0 30.0 --
3/8" 25.0 15.0 35.0 23.0 32.0 15.0 100.0 
#4 0.0 0.0 0.0 0.0 0.0 0.0 97.6 
#8 0.0 0.0 0.0 0.0 0.0 0.0 91.4 

#16 0.0 0.0 0.0 0.0 0.0 0.0 70.0 
#30 0.0 0.0 0.0 0.0 0.0 0.0 37.0 
#50 0.0 0.0 0.0 0.0 0.0 0.0 14.0 

#100 0.0 0.0 0.0 0.0 0.0 0.0 3.0 
Pan 0.0 0.0 0.0 0.0 0.0 0.0 0.5 

The mix proportion for Series C in Group 1 is currently used in the Iowa DOT C3 mix. 

Series A and B were designed with the same paste content but with a different flowability. 

Series A is plain concrete without any admixture. In Series B, 30% cement by weight was 

replaced by Class C fly ash. In total, 18 batches of concrete were prepared in this group. 

Group 2 was designed to evaluate the effect of paste content on concrete properties. The 

coarse aggregate gradation used in this group was G 1 in Table 3 .4. The same amount of fine 

and coarse aggregates were used for all mix proportions in this group. The only component 

that varied in this group was the amount of paste. The paste content (by weight of concrete) 
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varied from 23% to 30%. The mix proportion P-23 was modified from the C3 used by the 

Iowa DOT. The amount of total aggregates was reduced by 4.5%, but the s/A was kept as 

0.44. The paste content (by weight) was 23% for the Pl mix proportion, 27% for P2, 29% for 

P3, and 30% for P4. A 30% paste content is normally used for SCC. 

Groups 3 and 4 were designed to evaluate the effect of fly ash on concrete properties; Class 

C fly ash was used for Group 3 mix proportions, and Class F fly ash was used for Group 4 

mix proportions. Series A from Group 1 was used as the reference mix proportion. The only 

variable component in this group was the paste component. Coarse aggregate with gradation 

G 1 was used. The paste content by weight was 28% of total concrete. The ratio of 

replacement of cement was 20%, 30%, 40% and 50%. 

Group 5 was designed to evaluate the Superplasticizer (SP) effect on concrete properties. The 

reference mix proportion was the same as Groups 3 and 4, and the A series from Group 1. 

Coarse aggregate gradation Gl was used. The dosage by weight of cement iwa 0.5% for SP-

0.5, 1.0% for SP-1.0, 1.5% for SP-1.5, and 2.0% for SP-2.0, respectively. As mentioned 

previously, the only variable component in this group was the paste component. 

Group 6 was designed to evaluate the viscosity-modifying admixture (VMA) effect on 

concrete properties. The reference mix proportion was FA-C-30 from Group 3; the only 

variable component in this group was the paste component. Coarse aggregate gradation G 1 

was used. The dosage by weight of cementitious material was 0.2% for VMA-0.2, 0.3% for 

VMA-0.3, 0.5% for VMA-0.5, and 0.67% for VMA-0.67, respectively. 

Group 7 was designed to evaluate the Acti-Gel (AG) effect on concrete properties. The 

reference mix proportion was FA-C-30 from Group 3, which was the same as Group 6; the 

only variable component in this group was the paste component. Coarse aggregate with G 1 

gradation was used. The dosage (by weight of cementitious material) was 0.2% is for AG-

0.2, 0.3% for AG-0.3, 0.5% for AG-0.5, and 0.67% for VMA-0.67, respectively. 
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Group 8 was designed to evaluate the effect of a combination of limestone and gravel 

aggregate on concrete properties. The reference mix proportion was FA-C-30 from Group 3, 

which was the same mix proportion that Groups 6 and 7 used. The ratio by which the gravel 

replaced the limestone aggregate was 25% for G:L=1:3, 50% for G:L=l:l, 75% for G:L=3:1, 

and 100% for G:L=l :0, respectively. Both gravel and limestone aggregate has the same 

gradation as G 1. 

3.3 Mixing Methods 

A Lancaster 30-DH pan concrete mixer (Figure 3.1) was used for concrete mixing. The pan 

mixer has a flat cylindrical pan to store the concrete. The mixing blades, which are separate 

from the pan, rotate inside the pan while it is rotating in the opposite direction. A separate 

blade is fixed against the inside edge of the pan and scrapes the material off of the side, 

moving it toward the center of pan where the mixing blades are rotating. 

Figure 3 .1 Rotating concrete pan mixer 

The standard AS TM C 192 lab mixing procedure was used as the unique mixing method in 

this study. This multiple-step mixing procedure is described below: 
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1. Coarse aggregate and around half of the amount of water with AEA were premixed 

about 30 seconds, 

2. Sand was added to the mixer, followed by cement and the rest of the water. The 

mixture was then mixed for three minutes. 

3. The mixture was allowed to rest for three minutes. 

4. The mixture was mixed again for another two minutes. 

3.4 Test Methods 

Coarse aggregate properties, including specific gravity, friction angle, uncompacted void 

content and absorption, were measured. Fresh concrete compactability was measured by the 

modified compaction factor test. Concrete flowability was measured by the IBB rheometer 

and the slump test. The unit weight of fresh concrete and compressive strength of hardened 

concrete were measured. Mini-paver and filling ability tests were conducted on selected mix 

proportions to evaluate their self-compactability, flowability, and shape stability. 

3.4.1 Measurement of Coarse Aggregate Properties 

The specific gravity and absorption of coarse aggregate were measured in accordance with 

the specifications in ASTM C127. The loose and compact bulk density and void content of 

recombined coarse aggregate were measured by filling the measure, that is, by scooping 

aggregate inside according to ASTM C29 (Figure 3 .2). 

Figure 3.2 Measurement of bulk density and void content of CA 
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The calculation of void content of coarse aggregate can be shown in the following equation: 

VCA = VCA - WCA I GSBCA x 100% 
VCA 

(3-1) 

In this equation, V CA is the void content(%), V CA is the volume of the measure, WFA is the 

weight of aggregate in the measure, and GsBCA is the dry specific gravity of the aggregate. 

The coarse aggregate friction angle was measured using the stability theory of slopes from 

geotechnical engineering (Dunn, et al. 1980). According to Lambe and Whitman (1969), the 

angle of repose for an ore pile of angular pebbles is the internal friction angle of the 

aggregate (Figure 3.3). 

The procedures for coarse aggregate friction angle measurement are described below: 

1. Dump aggregate at the center of the circle from a constant distance to the top of the 

pile. To minimize the impact effect, this constant distance should be as small as 

possible. 

2. Keep dumping until the bottom edge of the pile meets the circle (30" diameter). 

3. Measure the height of the pile and then calculate the friction angle of this aggregate 

(Figure 3.4). 

Three measurements were performed for each gradation of aggregate; the average value was 

used as the friction angle for a given coarse aggregate. 

Angles of Repose 

Figure 3.3 Formation of ore pile 
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Figure 3 .4 Coarse aggregate friction angle measurement 

3.4.2 Test Methods for Fresh Concrete Evaluation 

The standard tests listed below were used to evaluate fresh concrete properties: 

);> Unit weight-The unit weight test of fresh concrete was measured in accordance with 

ASTM C 138. 

);> Air content-The air content of fresh concrete was measured using a pressure meter in 

accordance with ASTM C231. 

In this study, non-standard tests for fresh concrete include the "non-tamping slump flow" 

test, "green" strength test, IBB rheometer test, and compaction factor test. 

Non-rodding Slump Flow Test 

The apparatus and procedures for this test are almost the same as the slump test standard by 

ASTM. The procedure is described below: 

1. The slump cone is placed on a rigid, non-absorbent plate, which is placed on a firm, 

level surface. 

2. Concrete is poured into the slump cone from a constant height without tamping. As 

Figure 3.5 shows, 30 inches from the base is used here. 

3. Concrete is continually poured into the slump cone until it filled the slump cone. 

After simply smoothing the top surface, the slump cone was lifted up to let the 

concrete slump. 

4. After testing, the slump and spread were measured. 
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i 
12 in 

1 
Spread 

Figure 3.5 Non-rodding slump flow test 

Concrete Green Strength Measurement 

A simple test was developed to evaluate the green strength of fresh concrete; a plastic cylinder 

mold ( 4" x 8", without a bottom) was used for the concrete casting. During the casting, the 

concrete mixture was poured into the cylinder mold with standard consolidation (ASTM C 192). 

Right after the cast, the plastic mold was removed and the shape of the concrete sample was 

examined. If a mixture demonstrated little or no deformation after de-mold, the mixture was 

considered as having good shape stability. Then the green strength test of the sample was 

pursued. Hardened concrete slices 4 inches in diameter were slowly placed on top of the fresh 

concrete sample one by one. The start of deformation was defined as the failure of the fresh 

concrete. The total weight of the concrete slices applied in the test divided by the loading area of 

the sample was defined as the green strength of the concrete. Figure 3.6 illustrates the test 

procedure for concrete green strength measurement. 
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(a) Casting: The mold was filled with 
fresh concrete with rodding. 

( c) Loading: Concrete slices are slowly 
placed on top of the fresh concrete 
sample one by one. 
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(b) De-molding: After the plastic mold 
is removed, concrete shape stability 
was examined. 

( d) Failure: The start of deformation 
is defined as concrete failure. 

Figure 3.6 Test procedure for concrete green strength measurement 

/BB Rheometer Test 

In this study, an IBB rheometer was used to evaluate the flowability of fresh concrete. The 

rheometer was modified from the Tattersall two-point device (Tattersall 1991), which has 

been successfully applied on concrete from a low slump of 1 inch to self-compacting 

concrete (Ferraris and Brower 2004). The rotating H-shape impeller of the IBB rheometer 

was inserted into fresh concrete in a cylindrical container(Figure 3. 7). A computer-controlled 

DC motor turned impeller, which is capable of rotating in a planetary motion. The planetary 

motion is necessary for low-workability concrete, because a relatively loose portion may be 

formed ifthe impeller keeps passing through the original orbit (Tattersall 1991). For each test, 

the total mass of concrete is kept constant at 90 pounds. The cross-sectional area of the 

impeller is 6.2 square inches. 
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The reaction torque from the impeller is measured by a load cell in the IBB rheometer, while 

the rotation speed of the impeller is measured by a tachometer. A linear relationship was 

generally found between the torque and speed, which is inconsistent with the Bingham model 

defined by the slope H, which is related to plastic viscosity, and the zero speed intercept G, 

which is related to yield stress (Tattersall and Banfill 1983). 

(a) IBB rheometer 

Container 
¥ 

(b) Paddle and container 

Figure 3. 7 IBB concrete rheometer 

During the test, the rotation speed of the paddle is controlled by a preset computer program. 

The test sequences used in this study are shown in Figure 3.8. The concrete specimen was 

pre-sheared after being placed into the container at a low, constant rate, around 0.2 

revolution/s, for 30 seconds. Next the sample was allowed to rest for 30 seconds, and then it 

was sheared at a constantly increasing rate from 0 to 1 (revolution/s) over a 100-second 

period. Finally, the sample was sheared at a constantly decreasing rate from 1 (revolution/s) 

to 0 in 100 seconds. 

Figure 3.9 shows a typical result from an IBB concrete rheometer. Interception G and slope 

Hare obtained from the down curve, because it fits well with the Bingham model. The yield 

term of G is obtained by extending the liner portion of the down curve (1 to 0.04s-1
) to the y 

axis. As reviewed before, this value represents the minimum stress required for a material to 
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flow or deform; therefore, it can be related to concrete yield stress. The viscosity term His 

obtained from the slope of the linear portion of the down curve. This H represents plastic 

viscosity, which is defined as the ability of a material to resist flow following the initiation of 

the flow. 
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Figure 3.8 IBB concrete rheometer test program 
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Figure 3.9 Typical IBB concrete rheometer result (FA-C-30) 

Modified Compaction Factor Test 

This test method was modified from the standard compaction factor test reviewed in Chapter 

2. The test apparatus included a measure, slump cone, and rigid frame (Figure 3.10.) 
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The measure used in this test was a cylindrical container made of steel. In the current study, 

the nominal maximum size of coarse aggregate was 1 inch. According to ASTM C 138, the 

capacity of this measure is 0.25 cubic feet. So, the same cylindrical container for the air 

content test was used here. The distance from the bottom of the measure to the pouring lever 

of concrete was 30 inches. 

1 
30 in 

Measure 

Figure 3 .10 Apparatus for compaction factor test 

The procedure for the modified compaction factor test is as follows: 

1. Pour fresh concrete into the cylindrical container through the slump cone from a 

constant height (30 inches) until the height of concrete in the container equals 

that of the container. No rodding or taping was used to compact the concrete in 

the container. 

2. Then simply smooth the top surface (Figure 3.10). 

3. Measure the mass of the measure filled with concrete. 

4. Calculate the density (unit weight) of concrete in a loose condition. 

The compaction factor is defined as follows: 

C 
. F density of concrete in loose condition 

ompaction actor=----------------
density of concrete in compacted condition 



www.manaraa.com

64 

The density (unit weight) of concrete in a compacted condition was obtained according to 

ASTM C 138. This compaction factor is an indicator of the compactability of fresh concrete, 

and the value is less than 1. 

3.4.3 Test Methods/or Hardened Concrete Evaluation 

In accordance with ASTM C39, compressive strength at 56 days was tested on 4 x 8-inch 

cylinder samples for all mix proportions. Cylinder specimens were prepared in two different 

ways: "rodding" and "non-rodding. Concrete cylinder specimens with rodding were obtained 

according to ASTM C 192 standard. The non-rodding concrete cylinder specimens were 

prepared following the procedures described below: 

• Place the slump cone on the top of the cylindrical model upside down. 

• Pour fresh concrete into the cylinder mold from a constant height (30 inches 

was used in this study) until the height of concrete in the mold equals that of the 

cylinder mold. No rodding or taping was used to compact the concrete in the 

cylinder mold during casting. Then simply smooth the top surface (Figure 3.11). 

• Cure for later testing. 

• Conduct compressive test according to ASTM. 

1 
30 in 

Figure 3 .11 Preparing of non-rodding cylinder specimen 
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In the remainder of this thesis, the compressive strength obtained from cylinder specimens 

prepared according to ASTM C 192 will be identified as rodding; the rest of the specimens 

will be identified as non-rodding. 

3.4.4 Lab Paving Simulation 

To find out whether the newly developed SF SCC was applicable to field paving, the 

research team members at ISU developed a simple mini-paver for paving SF SCC segments 

in the lab. Recognizing that SF SCC might need a certain pressure to consolidate, the mini­

paver was designed on an L box concept. As Figure 3.12 shows, the mini-paver system 

consists of (1) an L box with a platform on its top, (2) a towing system (a towing cable and a 

crank), and (3) a working table. The L box had a dimension of 18 inches wide, 24 inches 

long, 18 inches high, and 3 inches to 6 inches thick. It could pave an 18 inch (width) x 3 inch 

to 6 inch (thickness) x 48 inch (length) concrete pavement section in the lab, using two cubic 

feet of concrete mixtures. 

@v=2ft/min 

Concrete ~ 

~""'· ------36'---___, 

Work Table 

Figure 3.12 Mini-paver 

Right before paving, concrete was stored on the platform and approximate 200 pounds of 

weights were placed on the paver (in a chamber). A stop plate was positioned at the end of 

the horizontal leg of the L box. To start paving, concrete was pushed from the platform into 

the vertical leg of the L box up to a certain height, which generates pressure to consolidate 
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the concrete. Then, the stop plate was removed and the crank system was turned at a 

designated speed (3-5 ft/min), which pulls the mini-paver forward. As the mini-paver moves 

forward, it extrudes the concrete, or a pavement slab, out of the horizontal leg of the L box. 

After paving, the shape stability of the fresh concrete and the surface condition of the 

pavement were examined. The cross section was examined also to evaluate the distribution of 

coarse aggregate and air void systems. 
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CHAPTER4 

RESULTS AND DISCUSSION 

In this chapter, the results and discussions of the tests performed in the present study were 

presented. Effects of coarse aggregate gradation, paste content, class C and F fly ash, 

viscosity-modifying admixture (VMA), Acti-Gel, superplasticizer, combined coarse 

aggregate on compactability, flow ability, and shape stability of concrete were studied. 

4.1 Aggregate Properties Measurements 

The loose and compact bulk density and void content of the recombined limestone coarse 

aggregate limestone used in this study are presented in Table 4.1. The percentage of 

difference was defined as the difference between compact and loose bulk density divided by 

compacted bulk density of the aggregate. 

Table 4.1 Dry bulk density of recombined coarse aggregates 

Loose Compacted Difference 

No. Bulk Bulk Fineness Friction 
Density 

Voids 
Density 

Voids (%) Modulus angle (0
) 

(lb/ft3
) 

(%) (lb/ft3
) 

(%) 

Gl 84.2 44.7 89.5 41.2 5.9 6.85 44.5 

G2 83.6 45.4 91.8 40.0 8.9 7.30 45.1 

G3 83.2 45.3 92.6 39.2 10.1 6.75 43.1 

G4 84.6 44.6 94.5 38.1 10.5 6.91 43.6 

GS 85.6 43.8 93.6 38.6 8.5 7.04 43.9 

G6 86.5 43.4 89.5 41.3 3.4 7.05 44.1 

The percentage of difference indicated the easy of the coarse aggregate particles to be packed 

without consolidation. The smaller the difference, the easier the aggregate to be compacted. 
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According to the test results, aggregate Gl and G6 might provide concrete with a better 

consolidation than aggregate G2 and G5, which might be better than aggregate G3 and G4. 

The friction angles of the coarse aggregates are also presented in Table 4.1. As discussed 

before, the internal friction and interlock of coarse aggregate may affect the flowability and 

shape stability of fresh concrete in different way. 

4.2 Concrete Control Tests Results 

The unit weight, air content of fresh concrete and 56-day compressive strength was measured 

on each batch of concrete. All concrete control tests results are list in Table 4.2. 

As described before, the concrete cylinders for compressive strength were prepared with and 

without rodding. Not all values of compressive strength for concrete specimens prepared 

without rodding were obtained, as shown in Table 4.2. This is due to the scattering of testing 

data. 

Concrete mixes with fly ash Class C have lower air content than others, to maintain required 

air content, admixture dosages must be increased. This is consistent with former results by 

Pistilli (1983) and ACI Committee 232 (1996). 

The unit weight of fresh concrete and compressive strength shown in Table 4.2 indicate that 

no clear pattern of effect of mix design of concrete on these two parameters was observed. 
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Table 4.2 Concrete control test results 

Air 
Unit weight, Strength (psi)~ 56-days 

Group Mix proportion (%) Rodding, No 
Tamping (pct) Tamping 

A-Gl 6.5 143.5 - 8800 

A-G2 6.0 141.8 - 8580 

A-G3 6.4 142.2 - 8750 

A-G4 6.0 142.5 - 8500 

A-GS 6.4 143.8 - 8450 

A-G6 6.6 144.5 - 8648 

B-Gl 4.0 141.3 8592 8597 

B-G2 3.8 144.2 8427 8550 

B-G3 4.2 143.0 8234 8314 
1 

B-G4 3.8 143.8 8544 8647 

B-G5 4.0 145.0 8479 8882 

B-G6 4.2 140.0 8560 8670 

C-Gl 5.2 144.4 - 8620 

C-G2 4.8 141.6 - 8850 

C-G3 5.0 145.5 - 8375 

C-G4 4.6 140.3 - 8470 

C-G5 4.8 142.4 8230 

C-G6 4.6 139.9 - 8300 

P23 5.8 141.5 - 8408 

P27 5.4 145.6 - 8500 
2 

P29 4.8 144.7 - 8486 

P30 4.6 140.0 - 8650 



www.manaraa.com

FA-C-20 

FA-C-30 
3 

FA-C-40 

FA-C-50 

FA-F-20 

FA-F-30 
4 

FA-F-40 

FA-F-50 

SP-0.5 

SP-1.0 
5 

SP-1.5 

SP-2.0 

VMA-0.2 

VMA-0.3 
6 

VMA-0.5 

VMA-0.67 

Acti-Gel-0.2 

Acti-Gel-0.3 
7 

Acti-Gel-0.5 

Acti-Gel-0.67 

L:G=3:1 

L:G=l:l 
8 

L:G=l:3 

L:G=O:l 

Note: 
Group 1 : For study of coarse aggregate gradation 
Group 2: For study of paste content 
Group 3 & 4 : For study of fly ash 
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3.2 

3.5 

3.3 

3.6 

4.0 

4.6 

4.2 

3.8 

6.0 

6.1 

5.8 

6.0 

4.0 

4.6 

5.0 

4.8 

5.6 

5.8 

6.0 

6.0 

3.1 

3.3 

3.6 

3.5 

Group 5 : For study of viscosity-modifying admixture (VMA) 
Group 6 : For study of Acti-Gel 
Group 7 : For study of combined coarse aggregate 
Group 8 : For study of superplasticizer 

144.6 8650 8890 

145.2 8950 8967 

145.0 8797 9067 

145.5 7144 7460 

141.5 - 8230 

138.9 7250 8400 

145.5 7825 8190 

144.0 7650 8780 

144.2 8760 8900 

144.2 8850 9125 

145.0 8758 8870 

145.2 8970 8990 

141.0 8450 8550 

145.5 7885 8205 

142.6 8350 8565 

144.8 8280 8450 

141.0 7992 8226 

142.0 - 8816 

142.0 - 8970 

143.5 - 8897 

141.5 8890 8754 

141.5 8775 8665 

143.8 8800 8898 

143.2 8750 8900 
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4.3 Concrete Slump Test Results 

4.3.1 Effect of Gradation 

Concrete slump test results are shown in Table 4.3. The mix proportions in series A have an 

average slump value of 2.8 inches (standard deviation 0.1882); those in series B have an 

average slump value of 8.0 inches (standard deviation 0.2787); and 4.0 inches (standard 

deviation 0.44 72) for those in series C. 

Figure 4.1 shows the shapes of concrete mixtures after slump tests. All concrete mixes for 

series A have visible big voids on their surface. Shear collapse were found during test due to 

the loose structure (big voids inside). This indicates that the concrete mixtures had a poor 

self-compactability. All concrete mixtures for series B had no visible voids on their surface. 

Their shape after slump test looked still like a regular cone with top diameter around 8". The 

side surfaces are smooth for all mixes. Mixes number B-Gl, B-G3, B-G5 and B-G6 have 

smoother top surface than others. Mixtures B-G 1, B-G4 and B-G6 showed better shape than 

mixture B-G3, and B-G5, which swell at the bottom. In mix proportion series C, C-G3 and 

C-G5 showed better shape after lifting the slump cone. The surface of concretes in this series 

are smoother than those of concrete in series A and coarser than those of concrete in series B. 

Furthermore, the visible voids in concrete for series B are more than those in concrete for 

series A and less in concrete for series B. 

Coarse aggregate gradation has effect on concrete slump test. From current results, mixes B­

G 1 and B-G6 have better shape and surface texture. 
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Table 4.3 Effect of gradation on concrete slump 

Slump (in) Spread (in) Shape * Mix proportion 

A-Gl 2.50 8.50 C,V,RS 
A-G2 2.75 8.75 C,V,RS 
A-G3 3.00 8.75 V,RS 
A-G4 2.75 8.75 C,V,RS 
A-GS 2.75 8.50 V,RS 
A-G6 3.00 9.00 V, SS 
B-Gl 7.90 12.10 SS 
B-G2 7.90 12.00 SS 
B-G3 8.25 13.75 SS 
B-G4 8.00 12.50 SS 
B-GS 8.25 13.60 SS 
B-G6 7.50 11.60 SS 
C-Gl 4.25 9.25 V, SS 
C-G2 4.75 9.05 V, SS 
C-G3 3.50 8.90 V, SS 
C-G4 3.75 9.00 V, SS 
C-GS 4.00 9.00 SS 
C-G6 3.75 9.00 V, SS 

*Note: 

C: Collapse ································ 

V: Visible void ··· ........ ..... ... . 

RS: Rough surface············ ··· 

SS: Smooth surface ......... . 
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A-Gl A-G2 A-G3 A-G4 A-G5 A-G6 

B-Gl B-G2 B-G3 B-G4 B-G5 B-G6 

C-Gl C-G2 C-G3 C-G4 C-G5 C-G6 
Figure 4.1 Shape of concrete with different graded coarse aggregate after slump test 

Note: 
Series A: OPC, Paste=28%, w/c=0.38; 
Series B: OPC+30%FA, Paste=28%, w/c=0.38; 
Series C: OPC, Paste=22%, w/c=0.43 

4.3.2 Effect of Paste Content 

Slump test results on concrete mixes made with an optimal coarse aggregate gradation (Gl) 

and with different paste content are shown in Figure 4.2. It is clear that as the paste increases, 

the value of slump and spread increase. As discussed previously, the amount of cement paste 

which fills up the spaces between aggregate particles and coats the surface of the particles 

has significant effect on the concrete flowability and shape stability. Generally, the more the 

paste, the easier the concrete flows. 

Figure 4.2 (c) shows the remained shape of the concrete after the slump tests. As the paste 

amount increased, the more regular shape and smoother surface of the slumped concrete were 
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observed. The concrete with 29% and 30% paste had smoother surface than others, with no 

large voids seen on its top surface. The slumped shape was homogeneous and no collapse 

was observed during testing. 
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(b) Spread results 
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Figure 4.2 Effect of paste content on slump test results 
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4.3.3 Effect of Fly Ash and Superplasticizer 

After the optimal coarse aggregate gradation (Gl) and paste content (28%) were selected, 

slump tests on fresh concrete with the aggregate and paste content but different amount of fly 

ash were performed and the results are shown in Figure 4.3. Generally, fly ash replacement 

increased both slump and spread. As shown in Figure 4.3 ( c ), the concrete with fly ash had a 

better shape and smoother surface than OPC concrete (FA-C-00). FA-C-20 and FA-C-30 

appeared to be the best because no swelling at the bottom of the mixture was found compared 

with FA-C-40 and FA-C-50 (Figure 4.3 (c)). 

The class F fly ash used in this study did not provide concrete mixtures with good flowability 

and shape stability until the replacement level reached 50%. Compared with concrete made 

with class C fly ash=, the mixture of concrete made with 50% class F replacement (F A-F-50) 

had a less smooth lateral surface, probably due to the slow hydration of the fly ash. 

Superplasticizer also increased the flowability of fresh concrete as fly ash did, as shown in 

Figure 4.4. Concrete with a low dosage (0.5%) of Superplasticizer had a slump of 6.8 inches 

and a spread of 12.65 inches. It remained a certain shape after the slump test, as shown in 

Figure 4.4(c). When the superplasticizer dosage further increased from 0.5% to 2.0%, the 

concrete mixtures had slump more than 10 inches, which indicated that these mixes had no 

shape stability, formwork is required during casting. 

The shape of concrete with 0.5% superplasticizer after slump was similar to FA-C-20 and 

FA-C-30, as shown in Figure 4.4 ( c ). But the surface was rough, big voids were observed on 

the concrete surface. This might be because the absolute paste volume of concrete with fly 

ash is larger than that of concrete only with OPC and superplasticizer. 
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Figure 4.3 Effect of fly ash on slump test results 
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Figure 4.4 Effect of superplasticizer on slump test results 



www.manaraa.com

78 

4.3.4 Effect of Admixtures 

Slump tests on the concrete mixtures made with the optimal coarse aggregate gradation (Gl) 

and paste content (30%), and fly ash replacement (30% C ash) as well as different type and 

dosage of admixtures were performed, and the results, shown in Figure 4.5. Two chemicals, 

VMA358 and Acti-Gel were investigated. Figure 4.5 (a) and (b) show that Acti-Gel addition 

decreased the slump and spread of fresh concrete. VMA358 addition had no significant effect 

on slump and spread of fresh concrete. 

Figure 4.5 ( c) shows the shape of concrete with admixtures after slump test. It was observed 

that VMA358 did not change the shape of concrete after slump test very much. They all have 

cone shape, smooth surface and flat top surface. But at same amount of addition, Acti-Gel 

made the concrete mixture stiffer. Concrete mixtures having 0.5 and 0.67% Acti-Gel addition 

showed honeycomb and large voids on the surface. As a result, the amount of addition for 

VMA358 could be increased and the amount of addition for Acti-Gel should be limited to 

less than 0.5% by weight of cement for a self-consolidating concrete without any other 

admixture. 
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Figure 4.5 Effect of admixtures on slump test results 

Note: Recommended dosage from the manufactory: 

VMA-0.67 

Acti-Gel-0.67 

VMA358 = 0.13--0.65% weight of cementitious materials; Acti-Gel = 0.25--0.5% weight of concrete 
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4.4 Compaction Factor Test 

4.4.1 Effect of Coarse Aggregate Gradation 

The effect of coarse aggregate gradation on fresh concrete compaction factor is illustrated in 

Table 4.4. All the results were obtained from the modified compaction factor test. As 

mentioned before, six different coarse aggregate gradations were used in three different mix 

series. Series A and B were designed with the same paste content but different follow ability. 

A series is plan concrete without any admixture. Series B had a thirty percent class C fly ash 

replacement. Mix series C is the Iowa DOT C3 mix with w/c of 0.42. A total of 18 batches 

of concrete were prepared for the compaction factor study. 

Table 4.4 Effect of gradation on concrete compaction factor 

Mix Compaction Mix Compaction Mix Compaction 
proportion factor proportion factor proportion factor 

A-Gl 0.815 B-Gl 0.994 C-Gl 0.937 

A-G2 0.813 B-G2 0.996 C-G2 0.916 

A-G3 0.806 B-G3 0.986 C-G3 0.886 

A-G4 0.789 B-G4 0.989 C-G4 0.859 

A-GS 0.808 B-GS 0.998 C-GS 0.920 

A-G6 0.829 B-G6 0.995 C-G6 0.939 

Since the difference between loose and compacted coarse aggregate is an indicator of the 

energy required for coarse aggregate to be well packed, Figure 4.6 is plotted to show the 

relationship between concrete compaction factor and difference in coarse aggregate bulk 

density. As expected, the concrete mixture having the coarse aggregate with a smaller 

difference was self-compacted to a higher density. 
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Note that concrete mixtures in series B (slump=7-8") all had a compaction factor close to 

1.00, the highest as possible. This indicated that concrete with such a slump value could be 

self-compacted well without a need for additional consolidation. In this series of concretes, 

the volume of cement paste or mortar appeared sufficient not only to fill the spaces between 

the coarse aggregate particles with a certain thickness. As a result, coarse aggregate gradation 

displayed little effect on the compaction factor. The paste or mortar thickness estimation of a 

given concrete has been studied by Hu (2005). Differently, for concrete mixtures with a 

middle or low slump (2-4"), effect of coarse aggregate gradation on compaction factor 

appeared obvious. The better graded aggregate (G6 and GI), the higher compaction factor. 

Furthermore, the lower concrete slump, the lower the compaction factor the concrete had. 

The compaction factor less than 1.00 implies a need for an additional consolidation for the 

concrete mixtures to reach their maximum density. 
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Figure 4.6 Relationship between aggregate and fresh concrete compactibity 

Series A: OPC, Paste=28%, w/c=0.38; 
Series B: OPC+30%FA, Paste=28%, w/c=0.38; 
Series C: OPC, Paste=22%, w/c=0.43 
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4.4.2 Effect of Paste Content 

Table 4.5 show the compaction factor test results obtained from concrete with different paste 

content. 

Table 4.5 Effect of paste content on concrete compaction factor 
(G 1, w/c= , sand/ Aggregate=0.44) 

Mix proportion P-23 P-27 P-29 P-30 

Compaction 0.820 0.850 0.930 0.935 
factor 

As shown in Figure 4. 7, the concrete compaction factor increased with paste content. This is 

mainly due to the excess paste effect. A mixture with an excess of cement paste will be easy 

to place and will produce a smooth surface; however, the resulting concrete is likely to shrink 

more and be uneconomical (Oh et al., 1999; and Concrete Basics, 2005). The concrete 

compaction factor increased significantly from 0.825 to 0.925 if the paste content increased 

from 23% to 29%. Based on Figure 4.7, for the given concrete materials and mix design 

parameters, when paste content is approximate 32%, the compaction factor will reach 1.00. 

This is, further increasing paste content (beyond 32%) is not necessary for self­

compactabili ty. 
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Figure 4. 7 Paste content and compaction factor 
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4.4.3 Effect of Fly Ash and superplasticizer 

Figure 4.8 shows fly ash replacement effect on fresh concrete compactability. Fly ash 

generally has a low specific gravity (2.9 compared with 3.15 for Portland cement). Therefore, 

fly ash replacement for cement increases paste content of the concrete and provides the 

concrete with improved plasticity and better cohesiveness (Lane, 1983). In the present study, 

class C fly ash replacement improved concrete compactability more effectively than class F 

fly ash. Concrete with class C fly ash had a compaction factor of approximate 1.00 when the 

class C fly ash content reached 30% or higher. As a result, the optimal fly ash (class C) 

content is 30-40%. In a consideration that fly ash replacement may reduce concrete early age 

strength development, 30% class C fly ash was selected in the present study. 
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Figure 4.8 Effect of fly ash replacement on compaction factor 

Superplasticizer can increase the flowability as well as compactability of fresh concrete 

greatly. Figure 4.9 shows that at a low dosage (0.5%) superplasticizer increased the concrete 

compaction factor from 0.80 to 1.00. Further increasing superplasticizer dosage from 0.5% to 

2.0% is not necessary for compactability but impairs concrete shape stability. 
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4.4.4 Effect of Admixtures 

Effects of two types of viscosity modifying admixtures, VMA 358 and Acti-Gel on concrete 

compaction factor, were studied and the results are shown in Figure 4.10. As observed in the 

figure, addition of VMA358 did not affect the compaction factor of a self-compacting 

concrete, however, addition of Acti-Gel decreased compaction factor greatly . 
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4.4.5 Relationship between Slump and Compactability 

Although the slump cone test is used extensively in field, it dose not have any theoretical 

justification as a measure of workability, especially the compactability. In the present study, 

the slump tests were performed without rodding of concrete mixtures. This method provides 

a reasonable indication on how easy a mix can be placed. 

If the fresh concrete was poured from constant height into slump cone without any rodding, 

the following results can be observed: 

• If concrete is well compacted by its own weight and pour-down energy. The 

distribution of coarse aggregates is homogenous. There is no or little entrapped air in 

the mixture. Also, there is no serious structure spoil, such as honeycomb and 

segregation. After lifting the slump cone, the deformation should be plastically 

isotropic, see Figure 4.11. 

• If concrete is not compacted by its own weight and pour-down energy, the structure 

of concrete in slump cone is not isotropic. The present of weak parts in concrete mix, 

which has more entrapped air, honeycombs and voids or has no coarse aggregate but 

only mortar, will make the deformation anisotropic. The pictures of concrete after 

slump are shown in Figure 4.12. 

Figure 4.11 Slump test results-well compacted 

Figure 4.12 Slump test results-poor compacted 
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4.5 IBB Rheometer Test 

A typical flow curve obtained from an IBB rheometer test is shown in Figure 4.13. In the test 

the torque applied on the paddle was measured as the rotation speed. The relationship 

between the torque and rotation speed was almost linear, which indicated that the Bingham 

rheology model might applicable for describing the flow behavior of the concrete. Generally, 

as the concrete mixtures became stiff er, the applicability of the Bingham model for the 

mixtures reduced, because the laminar flow assumption might be no longer quite correct as 

the volume content of solid proportion increase (N ehdi and Mindess, 1996). As observed in 

the figure, the flow curve also demonstrated a thixotrophy loop and it indicated some 

material structures were broken down during testing process. 

10 ~~~~~~~~~~~~,~~~, ~~~~~ 

: : y = 5.60x + 2.00 

! i i R
2 ~ 0.98 ~ 8 ------- ---- -- -;- --- ---------- :----- --------- ~-- ----- -------~ --~- ------ LfJ ~--- ------ --- -:- ------- -- -----

i Up Curv~ i 6 !:::. ~ o : 
i ~ t:.6 it:. d i 

----------6--i----- ----~ --~ - - ------- -~ - ; ------ ------ ;- -- - -- -H=5~60 --------- -!- ---------- ----
" /;:.!:::. 6 ' ' ' ' ' 

E' z 6 - ut:. , : , , : 
~ 6 : : 1 : 

! 4 ~·····~ · · ···!······~~······ · · ···1 ··························· 1·············· 
I I I ! 

I I I I 

I I I I 

2 ' ' ' ' ' ' 
---....-~6~- ~!"""'"'4·=~~.~~ ' . ·'·· ...... ' . . i j . 

0 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 

Speed (Revis) 

Figure 4.13 Typical flow curve from IBB concrete rheometer test 

Interception I and slope H are calculated from the down curve because it fits well with the 

Bingham model. The yield term of I is obtained by extending the liner portion of the down 

curve (1 to 0.04s-1
) to the y-axis. As reviewed before, this value represents the minimum 

stress required for a material to flow or deform, therefore, it can be related to concrete yield 
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stress. The viscosity term His obtained from the slope of the linear portion of the down curve. 

This H represents the plastic viscosity which is defined as the ability of a material to resist 

flow since it starts. 

4.5.1 Effect of Coarse Aggregate Gradation 

The gradation of coarse aggregate determines the paste required for a concrete with certain 

workability. It has effect on concrete flowability as well as shape stability. As discussed in 

Chapter 3, coarse aggregate with gradation G2 has more large size particles than that with 

gradation G3. When a range of aggregate size is used, the smaller particles can fill up the 

spaces between the larger particles, thereby decreasing the void space and lowering the 

amount of paste required for filling the spaces. Thus, excess paste can coat the aggregate 

surface and improve concrete workability. Result from Figure 4.14 is consistent with this 

general knowledge. 

Table 4.6 lists rheological parameters calculated from the down curves obtained from IBB 

rheometer test on fresh concrete with different graded coarse aggregates and mix proportions. 

Table 4.6 Effect of coarse aggregate gradation on concrete rheology properties 

Mix I H Mix I H Mix I H 
proportion (Nm) (NmS) proportion (Nm) (NmS) proportion (Nm) (NmS) 

A-Gl 8.000 8.400 B-Gl 1.962 4.660 C-Gl 4.980 8.400 

A-G2 7.760 8.900 B-G2 1.845 5.800 C-G2 5.450 8.300 

A-G3 7.250 7.100 B-G3 1.545 4.630 C-G3 5.450 8.300 

A-G4 7.000 8.500 B-G4 1.523 4.930 C-G4 5.800 8.300 

A-GS 7.150 8.000 B-GS 2.067 6.060 C-GS 5.050 8.900 

A-G6 7.050 8.900 B-G6 1.986 5.900 C-G6 5.050 8.000 
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4.5.2 Effect of Paste Content 

Linear regression of the down curves of the IBB rheometer test results of the concretes made 

with different paste contents are shown in Figure 4.16. It indicated that as the paste content 

increased, the interception of the fresh concrete mixtures decreased, but the slope of the 

mixtures had a little change. As discussed before, high paste content might provide the 

mixtures with excess paste coat the aggregate surface and improved concrete workability. 

More paste in concrete can increase the distance between aggregate particles, thus reducing 

the friction between the aggregate particles and increasing the flowability of the fresh 

concrete. 
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Figure 4.15 Effect of paste content on concrete rheology test results 

The slope is related to the viscosity of the concrete mixtures. It is possible that after the 

excess thickness (or the thickness of the layer of paste coated on the aggregate surface) 

reaches certain value, the viscosity of the mixtures is mostly controlled by the paste flow 

properties, rather than aggregate (Oh, et al. 1999a, b ). The procedures of calculation of the 

thickness of excess mortar are shown in Appendix E. Further experimental results are needed 

to verify the previous findings. 
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Figure 4.16 Effect of paste content on rheological parameters 

4.5.3 Effect of Fly Ash Replacement and Superplasticizer 

Table 4.8 and Figures 4.17, 4.18 show the results obtained from IBB concrete rheometer tests 

of the concrete made with different fly ash (class C and F) replacement levels. The deference 

between concrete with and without fly ash was obvious. 
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Figure 4.17 Effect of fly ash (class C) on concrete rheology test results 

Due to low specific gravity of fly ash, volume of the paste in a given concrete mixture 

increased with the increased fly ash replacement level. As a result, the excess thickness of the 

aggregate particles increased and the friction between the aggregate decreased. 
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Figure 4.18 Effect of fly ash (class C) on concrete rheology test results 
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Figure 4.19 Effect of fly ash (class F) on concrete rheology 
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Figure 4.20 Effect of fly ash (class F) on concrete rheology test results 

The parameters related to Bingham rheology parameters calculated from down curves in 

Figure 4.19 were shown in Table 4. 7. 

Table 4. 7 Effect of fly ash on concrete rheology properties 

Mix G H 
Mix proportion 

G H 
proportion (Nm) (NmS) (Nm) (NmS) 

FA-C-20 2.600 6.100 FA-F-20 4.270 7.620 

FA-C-30 2.000 5.900 FA-F-30 3.620 7.790 

FA-C-40 1.620 5.200 FA-F-40 3.390 7.500 

FA-C-50 1.000 4.500 FA-F-50 3.050 7.300 

Figures 4.21 shows the flow curves obtained from IBB concrete rheometer tests of concrete 

with superplasticizer. It was observed that superplasticizer greatly decreased the interception 

of the fresh concrete, this made concrete have better flowability. The slope did not change 

too much if the superplasticizer dosage below 1.0, but the interception decreased greatly. 

Once the superplasticizer dosage beyond 1.0, the slope of concrete increased greatly. 
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Figure 4.21 Effect of Superplasticizer on concrete rheology 

4.5.4 Effect of Admixtures 

Figures 4.22 and 4.23 show the flow curves obtained from IBB concrete rheometer tests on 

concrete with Acti-Gel and VMA358, respectively. The effect of the Acti-Gel dosage on 

concrete flow behavior appeared more obvious than that of VMA358. Both Acti-Gel and 

VMA358 increased interception and slope of the concrete flow curve as the admixture 

dosage increased. However, Acti-Gel affected the concrete flow behavior, especial on the 

interception, more effectively. 
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Figure 4.22 Effect of Acti-Gel on concrete rheology test results 
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Figure 4.23 Effect of VMA358 on concrete rheology test results 



www.manaraa.com

10 

e 8 

~ 
c 6 
0 
:g_ 

4 Q) 

~ s 

97 

8 
Cii 
~ 6 i t..;.;..o.;s=::::=-~~"""' 

~ 4 ------------ ----~- ---------- --- -- ----- ---- -- -o-VMA358 

en 
-= 2 ----------- -----~ -------- --- ----- ----------- -o-Acti-Gel -

0.2 0.4 

Dosage(%) 

(a) Interception 

0.6 0.8 
0 

0 0.2 0.4 

Dosage(%) 

(b) Slope 

Figure 4.24 VMA358 and Acti-Gel effect on concrete rheology 
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4. 5. 5 Relationship between Rheological Properties, Slump and Compaction Factor 

4. 5. 5.1 Slump Test and Rheological Properties 

0.8 

Figure 4.25 shows the slump values obtained from the present study had a strong correlation 

with the interception (with a very high R2 value of 0.93), while the slump values had no clear 

relationship with slope values. These findings are consistent with previous research, which 

indicated that the slump value is strongly correlated with yield stress of fresh concrete while 

largely independent of viscosity (Murata, 1984; Tattersall, 1991; Christensen, 1991; and Saak, 

2000). These results support the need to use the rheometer test fully reflect the concrete 

flowability. 

Several research have developed models relating slump measurements and yield stress based 

on experimental data as well as the results from finite element modeling. Hu and de Larrard 

(1994) developed a model relating concrete slump to yield stress based on data taken from 

tests using a BTRHEOM concrete rheometer. Helmuth et al. (1995) developed a slump 

model based on geometric constraints for the standard ASTM C-143 concrete slump cone, 

where yield stress was calculated based on Murata's (1984) model. 
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Figure 4.25 Slump and rheology parameters 

As shown in Figure 4.26, the spread values were found to have a strong correlation with the 

interception of IBB test results (Figure 4.26 (a)), and slump values were correlated with the 

slope of the IBB results, the later of which indicated that the measurement of spread from the 

slump test partially reflected the flow resistance (or viscosity) of the tested material. 
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Figure 4.26 Relationship between spread and rheology parameters 

Since the interception of the IBB test results showed strong correlations with both slump and 

spread, there must be a relationship between the slump and spread. The relationship has been 

actually developed by some previous researchers. Murata (1984) established a simple 

relationship between slump and yield stress based on simple force balance analysis, 

Christensen (1991) corrected the integration errors in Murata model, and after that Saak 

(2000) converted it to a dimensionless quantities and geometry-free application. Helmuth et 

al. (1995) developed a slump model based on geometric constraints for the standard ASTM 

C-143 concrete slump cone. Yield stress was calculated based on Murata's model. The radius 
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of the base of the slumped concrete was assumed to be a function of the final slump height as 

below: 

r =(~-3Jji -1 
s 12-s 

(4.1) 

where "s" is the slump height and "rs" is the radium of the base of the slumped concrete. 

This relationship between slump and spread was shown in Figure 4.27. The present 

experimental results were also shown in the figure. These results can be divided into three 

groups. 
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Figure 4.27 Slump and spread 

In a range of slump higher than about 9 inches, or spread larger than 24 inches, the calculated 

and measured values of slump and spread are in good agreement for model developed by 

Helmuth et al. (1995). But in the range of lower slumps, the calculated values are excessively 

low. This is mainly due to the non-symmetric slumps due to non-rodding, as shown in Group 

I Figure 4.28. The structure of concrete in slump cone is not isotropic without compacted. 
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The present of weak parts in concrete mix, which has more entrapped air, honeycombs and 

voids or has no coarse aggregate but only mortar, will make the deformation anisotropic. 

An empirical function between slump height and the base radium of the slumped concrete 

based on current experimental results were developed based on the relations shown in Figure 

4.25 (a) and Figure 4.26 (a). 

rs = 11 x (11.5 - stoAis (4.2) 

where "s" is the slump height and "rs" is the radium of the base of the slumped concrete. 

Figure 4.28 shows the general ranges of the slump and spread as well as the typical shapes of 

the concrete mixtures in Group I, II, and III. 

As shown in Figure 4.28, Group 1 mixtures behaved just like conventional concrete mixtures. 

Without rodding and vibration, the mixtures could not hold their shapes due to existence of 

entrapped air voids. Therefore, rodding or vibration is necessary for them. 

Group II mixtures generally had a slump of 7-9" and spread of 12-15". The mixtures 

displayed a regular short cone shape because the entire sample deforms horizontally due to 

viscous forces acting in conjunction with the downward gravitational force, as shown in 

Figure 4.29. this group of concrete mixtures also had a compaction factor of 1.0. As a result, 

these mixtures appeared not only able to flow and self-compact but also able to hold it shape 

after demolding. 

Group III mixtures also exhibited excellent flow and self-compactability. However, they had 

little shape stability, shown by their excessive spread. 
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Figure 4.28 Cauterizations of concrete mixtures based on slump 
concretes (without rodding and vibration) 
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Figure 4.29 Low yield stress slumped concrete 
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4.5.5.2 Fresh Concrete Compactability and Rheological Properties 

The relation between compaction factor and rheology related parameters, interception and 

slope, were examined. Concrete mixtures with a constant IBB slope (near to 5.0 NmS and 8.2 

NmS respectively) were chosen. These mixtures are list in Table 4.8. 

Table 4.8 Mixtures selected for the study of the relationship between 
interception and concrete compactability 

Compaction Standard 
Mix I (Nm) H (NmS) Av.H 

Factor Deviation 

A-Gl 0.815 8.000 8.400 

A-GS 0.808 7.150 8.000 

C-Gl 0.937 4.980 8.400 

C-G2 0.916 5.450 8.300 8.2 0.172 

C-G3 0.886 5.450 8.300 

C-G4 0.859 5.800 8.300 

C-G6 0.939 5.050 8.000 

B-Gl 0.994 1.962 4.660 

B-G2 0.996 1.845 5.800 

B-G3 0.986 1.545 4.630 

B-G4 0.989 1.523 4.930 

P-30 0.935 3.140 4.87 

FA-C-40 1.000 1.620 5.200 
5.0 0.417 

FA-C-50 1.000 1.000 4.500 

AG-0.2 0.900 4.430 4.710 

AG-0.3 0.860 5.700 5.140 

AG-0.67 0.810 7.280 5.560 

G:L=l:l 1.000 1.760 4.790 

G:L=3:1 1.000 1.932 4.870 
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As shown in Figure 4.30 (a), for concrete with same slope value, the compaction factor value 

was found to have a strong correlation with the interception (with very high R2 values of 

0.9138 and 0.9196). With the increase of interception, the compaction factor of fresh 

concrete decreased. This means that more energy is required to make the fresh concrete 

mixtures with high interception value well compacted. To achieve the maximum compaction 

factor of 1, the interception value of a concrete mixture shall be less than 2 Nm, thus, 

ensuring the fresh concrete is self-compactable. 
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Figure 4.30 Relationship between concrete compactability and interception 
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Figure 4.32(b) demonstrates that the relationship still exists for different H values. 

Similarly, in the study of the relationship between concrete compactability and the IBB slope 

values, concrete mixtures with a constant interception (near 2.0 Nm and 5.7 Nm) were 

selected. These mixtures were list in Table 4.12. 

Table 4.9 Mixtures selected for the study of the relationship between slope and concrete 
compactability 

Mix 
Compaction 

I(Nm) H (NmS) Av. I (Nm) 
Standard 

Factor Deviation 

B-Gl 0.994 1.962 4.660 

B-G2 0.996 1.845 5.800 

B-G5 0.998 2.067 6.060 

B-G6 0.995 1.986 5.900 

FA-C-30 0.990 2.000 5.900 
2.0 0.121 

VMA-0.2 0.990 2.200 6.000 

VMA-0.5 0.990 2.240 6.800 

L:G=3:1 1.000 1.960 5.600 

L:G=l:3 1.000 1.932 4.870 

L:G=O:l 1.000 1.975 4.290 

C-G3 0.886 5.450 8.300 

C-G4 0.859 5.800 8.300 

P-23 0.820 5.800 7.500 5.7 0.042 

AG-0.2 0.860 5.700 5.140 

AG-0.5 0.830 5.720 6.120 

Figure 4.31 shows that for concrete mixtures with a given interception value, the compaction 

factor values appeared independent upon the slope values from the IBB tests. When the slope 

increased, the compaction factor of fresh concrete did not vary significantly. For a given 

slope value for example, 5, both low and high compaction factors (0.85 and 1.00) were 

achieved. 
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Figure 4.31 Relationship between concrete compactability and slope 

The experimental results of fresh concrete compaction factor and rheological parameters are 

shown in Figure 4.32. All experimental data were divided into two groups according to their 

compaction factor values, less than 0.99 and more than it. Results show that no clear 

correlation between interception and slope. But fresh concrete compactability is found an 

interception controlled property. All concrete mixtures with compaction factor more than 

0.99 are in the area shown in Figure 4.32. Meantime, the maximum interception value of 3 is 

required to obtain self-compactability. Further increase the interception will decrease the 
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self-compactability of fresh concrete. This should be a design critical for self-consolidating 

concrete. 
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Figure 4.32 Interception vs. slope 
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4.6 Green Strength Test 

Green strength was tested for selected concrete mixtures. These mixtures had different 

rheological properties. Table 4.10 lists all mix proportions, slump test results and rheological 

properties used in this study. The start of any deformation of the concrete specimen is 

defined as the failure. 

Figure 4.33 shows pictures of the fresh 4x8 inch concrete cylinders right after demolding. 

Two specimens, FA-C-30 and FA-F-30, slumped after demolding. These two mixtures had 

lower interception values than others. For FA-C-30, no "green" strength was able to be 

measured on a 4x8 inch cylinder because the whole concrete cylinder slumped. Instead, a 4x4 

inch cylinder was used in the green strength test. For FA-F-30, green strength was still 
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measured on 4x8 inch cylinder, although the concrete cylinder partly deformed at the bottom, 

as shown in Figure 4.36. Another 4x4 inch cylinder was also tested. 

Table 4.10 Concrete mixes selected for green strength test 

Number Slump (in) Spread (in) I (Nm) H (NmS) 

A-Gl 2.50 8.50 8.23 8.00 

C-Gl 4.25 9.25 4.90 8.60 

FA-C-30 7.30 11.60 2.00 5.90 

FA-F-30 6.50 10.25 3.63 7.79 

ActiGel0.5 2.75 8.00 5.75 7.50 

ActiGel0.67 1.50 9.00 7.10 8.00 

Figure 4.33 Shape of concrete after demolding 

In Figure 4.34, pictures taken after the concrete cylinders' failure are shown. For fresh 

concrete cylinders A-G 1, C-G 1, Acti-Gel-0.5 and Acti-Gel-0.67, a failure surface was 

observed. For fresh concrete cylinders FA-C-30 and FA-F-30, the failure is plastic 

deformation start from the bottom of the cylinder. 

Figure 4.34 Shape of concrete after failure 
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Table 4.11 Green strength results 

I(Nm) 
Green strength (psi) 

4x4" 4x8" 

A-Gl 8.00 2.74 2.40 

C-Gl 4.98 1.44 1.10 

FA-C-30 2.00 0.92 NIA 

FA-F-30 3.62 1.35 0.91 * 
AG-0.5 5.72 1.69 1.35 

AG-0.67 7.28 2.06 1.72 
Note: 
*:Concrete cylinder has already partly deformed before measuring the green strength. 
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Figure 4.35 Relationship between fresh concrete green strength and interception G 

It is clear that the fresh concrete's green strength is strong correlate with its yield term 

rheological parameter, as discussed in literature review. 
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4. 7 "Mini-paver" and Filling Ability Test 

One concrete mixture (FA-C-30) having the compaction factor values of 1.0, was selected 

for a mini-paver test to further evaluate its compactability, flowability and shape stability. 

The thickness of the mini-paver pavement section was set as 4 inches. 

Table 4.12 Concrete mix for mini-paver test 

Number OPC j Fly Ash-C Water Sand Coarse Agg. 
! 

FA-C-30 567 243 308 1269 1620 

As shown in Fig. 4.36, the mini-paver test demonstrated that well-designed SF SCC mixtures 

could not only self-consolidate but also hold its shape very well after coming out from the 

paver. The top surface of the final pavement section was smooth, and little or no edge slump 

was observed. 

Figure 4.36 Mini-paver test section for SF SCC 

After the concrete was hardened, the mini-paver test section was cut into smaller sections. 

Three 50 mm (2") and 100 mm ( 4")-diameter cores were taken at the age of 9 days for 
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compressive and split tensile strength tests, respectively. The average concrete compression 

strength was 4900 psi, and the average split tensile strength was 420 psi. Cross section of the 

SF-SCC section showed no visible honeycomb and segregation, and the aggregate 

distribution was as well as that in conventional pavement concrete (Figure 4.3 7). 

Figure 4.37 Cross section of pavement slab 
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CHAPTERS 

CONCLUSION AND RECOMMENDATIONS 

5.1 Summary 

In this study, a new type of self-consolidating concrete for slip-form paving (SF SCC) was 

developed. Effects of materials and mix proportions on fresh concrete compactibility, 

flowability, and shape stability were studied. 

Type I cement and class C and F fly ash were used as cementitious materials. Air-entraining 

agent (AEA), viscosity modifying admixture (VMA), and superplasticizer were used as 

admixtures. Normal river sand and limestone were used as aggregate. A total of 46 different 

mix proportions were evaluated. Nun-rodding slump flow test, modified compaction factor 

test, IBB rheometer test and "green" strength tests were performed to evaluate the concrete 

compactibility, flowability, and shape stability. In addition, a "mini-paver" was developed to 

simulate the field SF SCC paving in laboratory. 

This research has demonstrated that by engineering concrete materials and mix proportions, 

it is feasible to develop a new type of SCC for slip form paving application. A new type of 

self-consolidating concrete for slip-form paving was developed, as well as a new test method 

for evaluation of fresh concrete compactibility and a new test method for lab simulation of 

pavmg. 

5.2 Conclusions 

The following conclusions can be drawn from the present study: 

1) Difference between compacted and uncompacted coarse aggregate void content has a 

significant influence on concrete compactability. The less the difference between 

compacted and uncompacted coarse aggregate void content (generally presented by 
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well graded aggregate), the higher the concrete compactability. Increasing the paste 

content results in higher concrete compactability. Fly ash (both class C and F) 

replacement for Portland cement can further improve concrete compactability. Low 

aggregate content, or high paste content, generally provides concrete with improved 

flowability. 

2) VMA can enhance concrete shape stability via increased plastic viscosity but with no 

significant change in yield stress of the concrete. Differently, Acti-Gel improves 

concrete shape stability via increases in both concrete yield stress and plastic 

viscousity. Acti-Gel has significant effect on fresh concrete rheology properties even 

at very small amount. Superplasticizer greatly improves the flowability by decreasing 

the yield stress. Therefore, optimal combination of fly ash, VMA, Acti-Gel, and/or 

Superplasticizer is necessary to obtain a good balance between flowability and shape 

stability of concrete. 

3) For the concrete mixtures used in the present study, concrete compactibility increased 

but stability decreased with flowability. There was a nonlinear relationship between 

slump and spread for the concrete mixtures tested. The interception obtained from the 

IBB tests (similar to yield stress of the mixtures) had a good relationship with not 

only slump but also "green" strength of concrete. 

5.3 Recommendations 

Based on the present test results, the following performance criteria are recommended for the 

future SF SCC mix design: 

• Slump: 7-8". 

• Spread: 11-14". 

• Shape of concrete after slump test: Cone with the flat top surface with the 

same diameter as the bottom diameter of slump cone. 

A potential SF SCC may contain: 
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• The paste content should be at least 28% of the total weight of concrete. 

• Sand to total aggregate ratio is around 0.44. 

• Around 30% of cement should be replaced by class C fly ash. 

• With or without viscosity-modifying admixture (VMA) and superplasticizer. 

Further study is needed to improve SF SCC performance for field applications: 

• To further study aggregate particle packing and its relationship with 

concrete flowability, compactability and shape stability. 

• To investigate effect of hydraulic pressure on shape stability of concrete. 

• To refine concrete mix design for its application to various field 

construction and environmental conditions 

• To study durability of SF SCC for a better service life. 



www.manaraa.com

115 

REFERENCE 

ACI Committee 232, (1996). "Use of Fly Ash in Concrete, AC! 232.2R-96'', Reported by 

ACI Committee 232, American Concrete Institute, Farmington Hills, Michigan. 

ACI Committee 309, (1997). "Guide For Consolidation of Concrete", Reported by ACI 

Committee 309, American Concrete Institute, Farmington Hills, Michigan. 

Anderson, M. G.; and Richards, K. S., (1987). "Slope Stability: Geotechnical Engineering 

and Geomorphology", John Wiley 

Anderson, P. J.; and Johansen, V., (1991). "Particle packing and concrete properties, in 

material science of concrete II", Skalny J and Mindess S (Eds.), The American Ceramic 

Society, pp. 111-147 

ASTM C29/C29M-97 (Reapproved 2003), (American Association of State Highway and 

Transportation Officials Standard AASHTO No.: T19/tl9M), (2003). "Standard test method 

for bulk density ("unit weight'') and voids in aggregate", Annual Book of ASTM Standards, 

Vol. 04. 02 

ASTM C33-03, (2003). "Standard specification for concrete aggregates", Annual Book of 

ASTM Standards, Vol. 04. 02 

ASTM C127-01, (2003). "Standard test method for density, relative density (specific gravity), 

and absorption of coarse aggregate", Annual Book of ASTM Standards, Vol. 04. 02 

ASTM C138/C138M-01, (2002). "Standard test method for density (unit weight),yield, and 

air content (gravimetric) of concrete", Annual Book of ASTM Standards, Vol. 04. 02 



www.manaraa.com

116 

ASTM C143/C143M-OO, (2002). "Standard Test Method for Slump of Hydraulic-Cement 

Concrete", Annual Book of ASTM Standards, Vol. 04.02 

ASTM C192/C192M-OO, (2002). "Standard practice for making and curing concrete test 

specimens in the laboratory", Annual Book of ASTM Standards, Vol. 04, No. 2 

Banfill, P. F. G., (1994). "Rheological methods for assessing the flow properties of mortar 

and related materials", Construction and building Materials, Vol. 8, No. 1, pp. 43-50 

Banfill, P. F. G., (2003). "The rheology of fresh cement and concrete-A review", 

Proceedings of 1 fh international Cement Chemistry Congress, May 2003, Durban 

Beaupre, D.; and Mindness, S., (1994). "Rheology of Fresh Shotcrete," Proceedings of 

Special Concrete: Workability and Mixing, Paisley, Scotland: RILEM, pp. 225-235 

Bird, R. B.; Dai, G. C.; and Yarusso, B. J., (1983). "The Rheology and flow of viscoplastic 

materials," Review of Chemical Engineering, Vol. 1, pp. 1-70 

Brown, J. H., (1980). "Effect of Two Different Pulverized-Fuel Ashes Upon the Workability 

and Strength of Concrete," Technical Report No. 536, Cement and Concrete Assocation, 

W exham Springs, pp. 18 

Chamberlain, J. A.; Clayton, S.; Landman, K. A.; and Sader, J. E., (2003). "Experimental 

validation of incipient failure of yield stress materials under gravitational loading", Journal 

of Rheology, Vol. 47, No. 6, pp. 1317-1329 

Chen, Y. Y.; Tsai, C. T.; and Hwang, C. L., (2003). "The Study on Mixture Proportion of 

Gap-gradation of Aggregate for SCC", ProceedingS of the 3rd International Symposium on 

Self-Compacting Concrete, Reykjavik, Iceland, pp. 17-20 



www.manaraa.com

117 

Christensen, G., (1991). "Modelling the Flow of Fresh Concrete: The Slump Test", Ph.D. 

Thesis, Princeton University 

CRC Press LLC, (1989). Definition of Green Strength, available on internet, web address: 

http://composite.about.com/library/glossary/g/bldef-g2505.htm (Date retrieved 15 November 

2005) 

Davidson, M. R.; and Khan, N. H., (2000). "Collapse of a cylinder of Bingham fluid", 

ANZIAM Journal, Vol. 42C, pp. C499-C517 

de Larrard, F.; Szitkar, J.; Hu, C.; and Joly, M., (1993). "Design of rheometer for fluid 

concretes." Proceedings, International RILEM Workshop, J.M. Bartos, ed., Paisley, Scotland, 

paper 22, pp. 201-208 

Dehn, F.; Holschemacher, K.; and Weisse, D., (2000) "Self-Compacting Concrete - Time 

Development of the Material Properties and the Bond Behavior", LACER, No. 5, pp.115-123 

Denis, A.; Attar, A.; Breysse, D.; and Chauvin, J. J., (2002). "Effect of coarse aggregate on 

the workability ofsandcrete", Cement and Concrete Research, Vol. 32, No. 5, pp. 701-706 

Domone, P. L., (2003). Fresh concrete in advanced concrete technology: Concrete properties, 

J. Newman and B.S. Choo (Eds.), Elsevier 

Dunn, I. S.; Anderson, L. R.; and Kiefer, F. W., (1980). "Fundamentals of Geotechnical 

Analysis", New York 

Edamatsu, Y.; Sugamata, T.; and Ouchi, M., (2003). "A mix-design method for SCC based 

on mortar flow and funnel tests", Proceedings of the 3rd international RILEM symposium on 

self-compacting concrete, 0. Wallevik and I. Nielsson, Ed., RILEM Publication, pp. 345-355 



www.manaraa.com

118 

Ferraris, C. F.; and de Larrard, F., (1998). "Testing and Modeling of Fresh Concrete 

Rheology", NISTIR 6094 

Ferraris, C. F.; de Larrard, F.; and Martys, N. S., (2001). "Fresh Concrete Rheology - Recent 

Developments," Proceedings of Materials Science of Concrete VI, American Ceramic 

Society, pp. 215-241 

Ferraris, C. F.; Brower, L. E.; Beaupre, D.; Chapdelaine, F.; Domone, P.; Koehler, E.; Shen, 

L.; Sonebi, M.; Struble, L.; Tepke, D.; Wallevik, O.; and Wallevik, J. E., (2005). 

"Comparison of Concrete Rheometers: International Tests at MB (Cleveland, OH, USA) in 

May 2003," NISTIR 7154 

Geiker, M. R.; Brandl, M.; Thrane, L. N.; and Nielsen, L. F., (2002). "On the effect of coarse 

aggregate fraction and shape on the rheological properties of self-compacting concrete", 

Cement, Concrete, and Aggregate, Vol. 24, No. 1, pp. 3-6 

Gj0rv, 0. E., (1998). "Workability: a new way of testing," Concrete International, Vol. 20, 

No. 9, pp. 57-60 

Helmuth, R., (1987). "Fly Ash in Cement and Concrete," Portland Cement Association, 

SP040 

Jamkar, S. S.; and Rao, C. B.K., (2004). "Index of aggregate particle shape and texture of 

coarse aggregate as a parameter for concrete mix proportioning", Cement and Concrete 

Research, Vol. 34, No. 11, pp. 2021-2027 

Khayat, K. H.; and Guizani, Z., (1997). "Use of Viscosity-Modifying Admixture to Enhance 

Stability of Fluid Concrete", AC! Materials Journal, pp.332-340 



www.manaraa.com

119 

Khayat, K. H.; and Yahia, A., (1997). "Effect of welan gum-High rangr water reducer 

combinations on rheology of cement grout", AC! Material Journal, Vol. 94, No. 5, pp.365-

372 

Khayat, K. H., Ghezal, A., Hadriche, M., (2000). "Utility of statistical models in 

proportioning self-consolidating concrete", RILEM Materials and Structures, vol. 33, juin, 

pp. 338-344 

Koehler, E. P.; Fowler, D. W.; and Ferraris, C. F., (2003). "Summary of Concrete 

Workability Test Methods," !CAR Report 105.1 

Kokubu, K.; and Ueno, A., (1996). "Mix Design of Extremely Dry Concrete Evaluated by 

Consolidation Effect", Journal of Materials, Concrete Structures and Pavements, No. 532/V-

30, pp. 109-118 

Kosmatka, S. H.; Kerkhoff, B.; and Panarese, W. C., (2002). "Design and concrete of 

concrete mixture", 14th edition, Portland Cement Association 

Lambe, T.W.; and Whitman, R.W., (1969). "Soil Mechanics," John Wiley and Sons, Inc., 

N.Y. 

Lane, R. 0. (1983), "Effects of Fly Ash on Freshly Mixed Concrete," Concrete International: 

Design & Construction, Vol. 5, No. 10, pp.50-52 

Liang, J.; Uji, K.; Kokubu, K; and Ueno, A., (2003). "The Compactability of Fresh 

Concrete", Memoirs of Graduate School of Engineering, Tokyo Metropolitan University, 

No.53, pp. 34-46 



www.manaraa.com

120 

Liang, J.; Uji, K.; Kokubu, K; and Ueno, A., (2004). "Influence of Mix Proportions on 

Compactability", Memoirs of Graduate School of Engineering, Tokyo Metropolitan 

University, No.54, pp. 34-43 

Malhotra, V. M., (1964). "Correlation between particle shape and surface texture of fine 

aggregates and their water requirement", Materials Research & Standard, December, pp. 

656-658 

Mindness, S.; Young, J.F.; and Darwin, D., (2003). Concrete, Second Edition. Pearson 

Education, Inc, Upper Saddle River, NJ. 

Mishima, N.; Tanigawa, Y.; Mori, H.; Kurokawa, Y.; Terada, K.; and Hattori, T., (1999). 

"Study on influence of aggregate particle on rheological property of fresh concrete", Journal 

of the Society of Materials Science, Japan, Vol. 48, No. 8, pp. 858-863 

Mittelacher, M., (1992). "Re-Evaluating the Slump Test," Concrete International, Vol. 14, 

No. 10, pp. 53-56 

Murata, J., (1984). "Flow and deformation of fresh concrete", Materiaux et Constructions, 

Vol. 17, No. 98, pp. 117-129 

Nishikawa, T.; Hashimoto, C.; Yamaji, N.; and Mizguchi, H., (2000). "Development of 

Consistency Test Method for Fresh Concrete on Table Vibratior Using Actuator", 

Proceedings of the Japan Concrete Institute, Vol. 22, No. 2, pp. 397-402 

O'Flannery, L. J.; and O'Mahony, M. M., (1999). "Precise shape grading of coarse 

aggregate", Magazine of Concrete Research, Vol. 51, No.5, pp. 319-324 



www.manaraa.com

121 

Oh, S.G.; Noguchi, T.; and Tomosawa, F., (1999a). "Evaluation of the rheologial constants 

of high-fluidity concrete by using the thickness of excess paste", Journal of the Society of 

Materials Science, Japan, August 

Oh, S. G.; Noguchi, T.; and Tomosawa, F., (1999b). "Toward mix design for rheology of 

self-compacting concrete", Proceedings of the first RILEM International Symposium, 

Stockholm, Sweden, September, pp. 13-14 

Okamura, H., (1997). "Self-Compacting High-Performance Concrete", Concrete 

International, Vol. 19, No. 7, pp. 50-54 

Okamura, H.; and Ouchi, M., (2003). "Self-Compacting Concrete (Invited paper)", Journal 

of Advanced Concrete Technology, Vol. 1, No. 1, pp. 5-15 

Okamura, H.; and Ozawa, K., (1995). "Mix design for self-compacting concrete", Concrete 

Library of JSCE, 1995, No. 25, pp. 107-120 

Ouchi, M.; Hibino, M.; and Okamura, H., (1996). "Effect of Superplasticizer on Self 

Compactability of Fresh Concrete", TRR 1574, pp.37-40 

Ozkul, M. H.; and Dogan, A., (1999). "Properties of fresh and hardened concretes prepared 

by N-vinyl copolymers", International Conference on Concretes, Dundee, Scotland 

Pistilli, M. F., (1983). "Air-Void Parameters Developed by Air-Entraining Admixtures, as 

influenced by Soluble Alkalies from Fly Ash and Portland Cement", AC! Journal, Vol. 80, 

No. 3, pp. 217-222 

Quiroga, P. N.; and Fowler, D. W., (2004). "The effect of aggregate characteristics on the 

performance of Portland cement concrete", !CAR Report 104-lF, International Center for 

Aggregates Research, The University of Texas at Austin 



www.manaraa.com

122 

Ravina, D., (1984). "Slump Loss of Fly Ash Concrete", Concrete International: Design & 

Construction, Vol. 6, No. 4, pp. 35-39 

Ritchie, A. G. B., (1962) " The Triaxial Testing of Fresh Concrete", Magazine of Concrete 

Research, Vol. 14, No. 40, pp. 37-41 

Roncero, J.; Gettu, R.; and Carol, I., (1999). "Effect of chemical admixtures on the shrinkage 

of cement mortars", AC! SP-189, pp.273-294 

Roy, D. M.; Scheetz, B. E.; and Silsbee, M. R., (1993). "Processing of optimized cements 

and concretes via particle packing", MRS Bulletin, pp.45-49 

Rudzinski, L., (1984). "Effect of Fly Ashes on the Rheological Behavior of Cement Pasts", 

Materials and Structures, Research and Testing, Vol. 17, No. 101, pp. 369-373 

Saak, A. W.; Jennings, H. M.; and Shah, S. P., (2001). "New Methodology for Designing 

Self-Compacting Concrete", AC! Materials Journal, Vol. 98, No. 6, pp. 429-439 

Saak, A. W.; Jennings, H. M.; and Shah, S. P., (2004). "A generalized approach for the 

determination of yield stress by slump and slump flow", Cement Concrete Research, Vol. 34, 

pp. 363-371 

Sader, J. E.; and Davidson, M. R., (2005). "Scaling behavior for gravity induced flow of a 

yield stress material", Journal of Rheology, Vol. 49, No. 1, pp. 105-112 

Santhanam, M.; and Subramanian, S., (2004). "Current developments in self-compacting 

concrete", the Indian Concrete Journal, June, 2004, pp. 11-22 

Sari, M.; Prat, E.; and Labastire, J. F., (1999). "High strength self compacting concrete: 

Original solutions associating organic and inorganic admixtures", Cement and Concrete 

Research, Vol. 29, No. 6, pp. 813-818 



www.manaraa.com

123 

Sedran, T.; and Larrard, F. D., (1999). "Optimisation of self compacting concrete thanks to 

packing model", First international RILEM symposium on self compacting concrete, RILEM 

Proceedings, pp. 321-332 

Schowalter, W. R.; and Christensen, G., (1998). "Toward a rationalization of the slump test 

for fresh concrete: Comparisons of calculations and experiments", Journal of Rheology, Vol. 

42,"No.4,pp. 865-870 

Schramm, G., (1994). "A Practical Approach to Rheology and Rheometry", Gebrueder 

HAAKE GmbH, Federal Republic of Germany 

Shilstone, J. M. Sr.; and Shilstone, J. M. Sr., (1989). "Concrete Mixture and Construction 

"Needs", Concrete International, Vol. 11, "No. 12, pp 53-57 

Shilstone, J. M. Sr., (1990). "Concrete Mixture Optimization", Concrete International, Vol. 

12, "No.6, pp 33-39 

Skarendahl, A.; and Petersson, 6., (2000). "Self-Compacting Concrete: State-of-the-Art 

report of RILEM Technical Committee 174-SCC", RILEM Publications, SARL, Cachan 

EF"NARC, (2001 ), Specifications and guidelines for SCC, Hampshire, UK, pp.29 

Struble, L. J.; Szecsy, R.; Lei, W.; and Sun, G., (1998). "Rheology of cement paste and 

concrete", Cement, Concrete, and Aggregate, Vol. 20, "No. 2, pp. 269-277 

Takada, K., (1999). "Influence of chemical admixtures on the mix proportion of general 

purpose self-compacting concrete", International Conference on Concretes, Dundee, 

Scotland 



www.manaraa.com

124 

Tang, C.; Yen. T.; Chang, C.; and Chen, K., (2001). "Optimizing mixture proportions for 

flowable high-performance concrete via rheology tests", AC! Material Journal, Vol. 98, No.6, 

pp. 493-502 

Tattersall, G. H.; and Banfill, P. F. G., (1983). "The Rheology of Fresh Concrete", Pitman, 

London 

Tattersall, G. H., (1991). "Workability and Quality Control of Concrete", London: E&FN 

Sp on 

Vom Berg, W., (1979). "Influence of specific surface and concentration of solid upon the 

flow behavior of cement pastes", Magazine of Concrete Research, Vol. 31, No. 109, pp. 211-

216 

Wallevik, 0. H., (2002). "Practical description of rheology of SCC", SF Day at the Our 

World of Concrete, Singapore, pp. 42 

Wallevik, 0. H., (2003). "Rheology-A scientific approach to develop self-compacting 

concrete", Proceedings of the 3rd international RILEM symposium on self-compacting 

concrete, RILEM Publications, pp. 23-31 

Whiting, D., (1979). "Effects of High-Range Water Reducers on Some Properties of Fresh 

and Hardened Concretes", Portland Cement Association, R & D Bulletin 061.0JT 

Whiting, D.; and Dziedzic, W., (1989). "Behavior of Cement-Reduced and Flowing Fresh 

Concrete Containing Conventional Water-Reducing and Second-Generation High Range 

Water-Reducing Admixtures", Cement, Concrete and Aggregates, CCGDG, Vol. 11, No. 1, 

pp. 30-39 



www.manaraa.com

125 

Williams, D. A.; Saak, A. W.; and Jennins, H. M., (1999). "The influence of mixing on the 

rheology of fresh cement paste", Cement and Concrete Research, Vol. 29, No. 9, pp.1491-

1496 

Yamakuchi, S.; Hashimoto, C.; Mizguchi, H.; and Takashima, N., (2000), "Analytical Study 

on the Fresh Concrete Flowing near by Reinforcement Bars", Proceedings of the Japan 

Concrete Institute, Vol. 22, No. 2, pp. 385-390 

Yang, M.; and Jennings, H. M., (1995). "Influences of mixing methods on the microstructure 

and rheological behavior of cement paste", Advanced Cement Based Materials, Vol. 2, No. 2, 

pp.70-78 

Yen, T.; Tang, C.; Chang, C.; and Chen, K., (1999). "Flow behaviour of high strength high­

performance concrete", Cement and Concrete Composites, Vol. 21, No. 5-6, pp. 413-424 



www.manaraa.com

126 

APPENDIX A 

COARSE AGGREGATE GRADATION 

Gradation curves for different aggregate gradations used in this study are presented below. 
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APPENDIXB 

COMPARISON OF MIX PROPORTIONS 

Typical mix proportions for conventional SCC (Kosmatka, et al. 2002) and pavement 

concrete (IOWA DOT C3 mix) are shown in this part comparing with the mix proportions 

used in this study. 

It is clear that all mix proportions used in this study is between the conventional pavement 

concrete and SCC. For conventional SCC, great deal of superplasticizer is normally used to 

improve its flowability. But in current study, it is not very necessary to do so since the fresh 

concrete do need desired shape stability. Flowability and segregation resistance for SF SCC 

are not as important as for conventional sec. 



www.manaraa.com

133 

"'C "'C c: c: co co 
"'C en en c: 

"'C co 
c: en co en 

(.) (.) m <( 
(.) "' "' "' c.. C1) C1) C1) 

'i: 'i: 'i: 
C1) C1) C1) 

"' "' "' 

"'C 
c: 
co en 

(.) 
(.) 
en 

~ 0 
0 co 

~ 0 
0 
CD 

~ 0 
0 
~ 

~ 0 
0 
N 

~ 0 
0 

-~ 0 -0 
+::; 
co .... 
(.) 

'i: 
+"' 

~ 
:::::J 

~ 



www.manaraa.com

"'C c: 
ca en 

0 
0 
c.. 

"'C 
c: 
ca en 

0 
M 

I 

c.. 

"'C c: 
ca en 

en 
N 

I 

c.. 

134 

"'C c: ca en 

..-... 
N 

I 

c.. 

"'C c: 
ca en 

M 
N 

I 

c.. 

"'C c: ca en 

0 
0 en 

~ 0 
0 co 

~ 0 
0 
U) 

~ 0 
0 
~ 

~ 0 
0 
N 

~ 0 
0 

.-. 
~ 0 ._. 
0 

+:; 
ca ... 
(J 

·c:: 
~ 

~ 
::J -
~ 



www.manaraa.com

P
C

C
 

:!rw
~0 =

1 W
C1

~e
:ti

i~,:
, ,,,

,, 
S

a
n

d
 

F
A

-C
-5

0 
F

A
 

I 
S

a
n

d
 

F
A

-C
-4

0 
F

A
 I

 
S

a
n

d
 

F
A

-C
-3

0 
S

a
n

d
 

-w V
I 

F
A

-C
-2

0 
S

a
n

d
 

se
c 

S
a

n
d

 

00
1o

 
20

%
 

40
%

 
60

%
 

80
%

 
10

0%
 

V
o

lu
m

e
tr

ic
 r

a
ti

o
 (

0 /o
) 



www.manaraa.com

P
C

C
 

S
an

d 

F
A

-F
-5

0 
F

A
 

S
an

d 

F
A

-F
-4

0 
F

A
 

S
an

d 

F
A

-F
-3

0 
F

A
 

S
an

d 
- w 0

\ 

F
A

-F
-2

0 
S

an
d 

se
c 

F
A

 
S

an
d 

0%
 

20
%

 
40

%
 

60
%

 
80

%
 

10
0°

/o
 

V
o

lu
m

e
tr

ic
 r

a
ti

o
 (

%
) 



www.manaraa.com

137 

APPENDIXC 

FRICTION ANGLE OF GRADED LIMESTONE AGGREGATE 

Figure C.1 shows fresh concrete compactibility vs. coarse aggregate friction angle. No clear 

relation can be found. Based on current test results, the friction angle of coarse aggregate has 

no significant effect on concrete compactibility. Concrete slump values and coarse aggregate 

friction angles are shown in Figure C.2. Again no clear relation can be found clearly. This is 

mainly because the difference between friction angles of graded coarse aggregate is too small 

to show difference clearly. But in Figure C.2, slight decrease in slump can be found with 

increase of coarse aggregate friction angle. 
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Figure C.1 Coarse aggregate friction angle vs. concrete compaction factor 

No clear relation can be found from Figure C.3 between spread and coarse aggregate friction 

angle. This is mainly because the flowability of concrete in this study is low. The mortar 

plays a main and important role in flowability of fresh concrete. 
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APPENDIXD 

IBB CONCRETE RHEOMETER TEST RESULTS 

Table D.1 Concrete test results 

Group Mix Compaction I H Slump Spread 
proportion Factor (Nm) (NmS) (in) (in) 

A-Gl 0.815 8.000 8.40 2.50 8.50 
A-G2 0.813 7.760 8.90 2.75 8.75 
A-G3 0.806 7.250 7.10 3.00 8.75 
A-G4 0.789 7.000 8.50 2.75 8.75 
A-G5 0.808 7.150 8.00 2.75 8.50 
A-G6 0.829 7.050 8.90 3.00 9.00 

B-Gl 0.994 1.962 4.66 7.90 12.10 
B-G2 0.996 1.845 5.80 7.90 12.00 

1 B-G3 0.986 1.545 4.63 8.25 13.75 
B-G4 0.989 1.523 4.93 8.00 12.50 
B-G5 0.998 2.067 6.06 8.25 13.60 
B-G6 0.995 1.986 5.90 7.50 11.60 

C-Gl 0.937 4.980 8.40 4.25 9.25 
C-G2 0.916 5.450 8.30 4.75 9.05 
C-G3 0.886 5.450 8.30 3.50 8.90 
C-G4 0.859 5.800 8.30 3.75 9.00 
C-G5 0.920 5.050 8.90 4.00 9.00 
C-G6 0.939 5.050 8.00 3.75 9.00 
P-23 0.820 5.800 7.50 3.85 9.50 

2 P-27 0.850 4.930 6.08 4.00 9.50 
P-29 0.930 3.470 5.64 5.75 10.20 
P-30 0.935 3.140 4.87 6.95 10.20 

FA-C-20 0.930 2.600 6.10 7.50 12.50 

3 FA-C-30 0.990 2.000 5.90 7.30 11.60 
FA-C-40 1.000 1.620 5.20 8.75 13.00 
FA-C-50 1.000 1.000 4.50 9.00 14.60 
FA-F-20 0.850 4.270 7.62 5.00 9.250 

4 FA-F-30 0.885 3.620 7.79 6.50 10.25 
FA-F-40 0.900 3.390 7.50 6.50 10.56 
FA-F-50 0.980 3.050 7.30 7.00 11.00 

SP-0.5 1.000 3.000 6.80 8.00 12.65 

5 SP-1.0 1.000 0.800 6.23 10.00 25.00 
SP-1.5 1.000 0.800 13.6 10.50 27.00 
SP-2.0 1.000 0.500 14.2 11.00 30.00 
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VMA-0.2 0.990 2.200 6.00 7.75 12.50 

6 VMA-0.3 0.990 2.400 6.25 7.75 12.25 
VMA-0.5 0.990 2.240 6.80 7.50 12.13 

VMA-0.67 0.990 3.000 7.00 7.25 12.75 

AG-0.2 0.900 4.430 4.71 5.00 10.00 

7 AG-0.3 0.860 5.700 5.14 3.50 8.50 

AG-0.5 0.830 5.720 6.12 2.75 8.00 
AG-0.67 0.810 7.280 5.56 1.50 9.00 

G:L=1:3 1.000 1.960 5.60 8.00 14.10 

8 G:L=l:l 1.000 1.760 4.79 8.50 13.50 
G:L=3:1 1.000 1.932 4.87 9.00 13.50 
G:L=l:O 1.000 1.975 4.29 9.00 14.00 

Note: 
H=Slope 
I =Interception 



www.manaraa.com

141 

APPENDIXE 

EXCESS MORTAR AND ITS THICKNESS 

The computation method for excess paste is based on the assumption of the two-phase flow 

theory (Oh et al., 1999a,b ). The same concept can be applied on the calculation of excess 

mortar in concrete just simply replace the paste phase with mortar in Figure E.1 and E.2. 

(Compacted) (Dispersion) 

Figure E.1 Excess paste theory (Oh et al., 1999b) 

Paste (Mortar) 
ggregate 

Compacting 

'-----> 

(a) (b) (c) 

Figure E.2 Excess paste theory (Oh et al., 1999b) 
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The volume of the excess mortar can be obtained from total mortar volume and "compact" 

mortar volume 

(E.1) 

where Ve is excess mortar volume; V m is total mortar volume; and V c is "compact" mortar 

volume. 

The total mortar volume (V m) can be calculated from the weight of mortar based on the mix 

proportion. 

(E.2) 

where y m is the density of mortar. It can be obtained from test or assumed to be a constant 

value of 2500kg/m3 (Mindess et al., 2003). 

The "compact" mortar volume (V c) can be calculated from the compacted voids ( v c ) of 

coarse aggregates. 

w 
V=~·V 

c D c 
CA 

(E.3) 

where W CA is weight of coarse aggregates, DcA is compacted bulk density of coarse 

aggregates, as shown in Table 4.1. 

In order to calculate the total surface area of coarse aggregate of graded coarse aggregates, 

one simplification was employed here to calculate the mean diameter of coarse aggregate 

particles for each sieve in ASTM C 33. The average of minimum and maximum sieve size 

was defined as the "mean diameter" for coarse aggregate particles in this sieve group, as 

shown in Table E. l. 
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Table E.1 Mean diameter for coarse aggregate particles 

Nominal size, sieves with square 
openings (mm) 

19.00 ~ 25.00 

12.50 ~ 19.00 

9.50 ~ 12.50 

4.75 ~ 9.50 

Mean diameter, DMi (mm) 

DM . = 19.00 + 25 .00 = 22.000 
1 2 

DMi = 19.00+12.50=15.750 
2 

DMi = 9.50+12.50 = 11.000 
2 

DMi = 9.50 + 4.75 = 7.125 
2 

Then the volume of each coarse aggregate particle for each sieve group can be simplified as 

the volume of a sphere with diameter value of DM. 

V. = _i7t(DM )3 
I 3 2 

The volume of coarse aggregate can be calculated from its weight and density. 

WCAi 
V CA i =--

YcA 

where W CAi is the weight of coarse aggregate, y cA is the density of coarse aggregate. 

The number of coarse aggregate particles can be calculated from: 

VCAi N .=-
1 v 

I 

Then, the total particle number for graded coarse aggregate is: 

N CA = LNi 
The surface area for each spherical coarse aggregate particle with diameter ofDMi is: 

The total surface area of coarse aggregate particles is: 

(E.4) 

(E.5) 

(E.6) 

(E.7) 

(E.8) 
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(E.9) 

The thickness of excess mortar (tp) can be calculated by dividing the volume of excess mortar 

(Ve) by the total surface area of the coarse aggregates (San). 

v t =-e 

p sail 
(E.10) 

The nominal Diameter (DA) of the whole coarse aggregate particles can be obtained from: 

"' 4 DA 3 
YcA = ~ VCAi =37t(2) xNcA 

I 

(E.11) 

where V CA is the total volume of coarse aggregates, NcA is the total particle number for 

graded coarse aggregate. 

Then, 

1/3 

(E.12) 

Then the relative thickness of excess mortar is 

(E.13) 

The results of the thickness and relative thickness of excess paste for this study is shown in 

Table E.2. 

Table E.2 Mean diameter for coarse aggregate particles 

Number Excess paste thickness, tp (mm) Relative thickness, r 

P-23 1.135 0.1132 

P-27 1.379 0.1375 

P-29 1.483 0.1479 

P-30 1.548 0.1543 
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The relationship between relative thickness of excess mortar and rheology parameters were 

shown in Figure E.3. 
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Figure E.3 Relative thickness of excess mortar and rheology properties 
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